Parallel Experiences

<u>Index</u>

The Problem

Base Algorithms

The Platform

Parallel Solvers

Facts in PS Research

Software and PO

Summary

Multiplicity Computing and SBSE

University of Málaga, SPAIN

Enrique Alba

Parallel Experiences

Index

The Problem

The Platform

Parallel Solvers

Software and PO

Summary

Facts in PS Research

Base Algorithms

Introduction: SEP's Modeled as Search Problems

THE PROBLEM

MODELING PHASE D/C SEARCH

KNOWLEDGE

 $\int_{-\infty}^{\infty} e^{-x^2} dx = \sqrt{\pi}$ $f(x) = a_0 + \sum_{n=1}^{\infty} \left(a_n \cos \frac{n\pi x}{L} + b_n \sin \frac{n\pi x}{L} \right)$ $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

QUANTIFICATION

SOLVER

Parallel Experiences

<u>Index</u>

The Problem

Base Algorithms

The Platform

Parallel Solvers

Facts in PS Research

Software and PO

Summary

Introduction: THE Problem

• Objective of a global search problem:

 $f(\vec{x}) \rightarrow max$: find a vector \vec{x}^* such that $\forall \vec{x} \in M : f(\vec{x}) \leq f(\vec{x}^*) \coloneqq f^*$

- Minimizing is also possible
- Vectors can map to other data structures

Parallel Experiences

<u>Index</u>

The Problem

Base Algorithms

The Platform

Parallel Solvers

Facts in PS Research

Software and PO

Summary

Introduction: Multiplicity Computing

The idea: multiple levels of technology The resources: computation, communication, storage The approach: take all of them into account in research The requirements: be measurable and predictable The goals: improved scalability, quality, dependability, security

How does this relate to parallel solvers?

Parallel Experiences

<u>Index</u>

The Problem

Base Algorithms

The Platform

Parallel Solvers

Facts in PS Research

Software and PO

Summary

Introduction: Parallel Solvers for Complex Problems

• Basic components of parallel Solvers are:

- Nodes performing separate search
- Communication pattern among the nodes
- Policy of the search (start, end, solution...)

Ex1: Parallel ACO

- ACO nodes
- All to all
- Exchange pheromone matrix

Ex3: Parallel EA

- Subpops. of partial solutions
- Ex2: Parallel SA Static ring
 - Exchange random selected sols.
- SA nodes - Random target
- Exchange actual best solution

Parallel Experiences

Introduction: Parallel Solvers for Search

Parallel **Experiences**

Introduction: Taxonomy

• Three features:

Index

The Problem

Base Algorithms

The Platform

Parallel Solvers

Facts in PS Research

Software and PO

Summary

- Other important issues are:
 - Node granularity
 - Central memory
- Static/Dynamic features
- . . .

Parallel Experiences

<u>Index</u>

The Problem

Base Algorithms

The Platform

Parallel Solvers

Facts in PS Research

Software and PO

Summary

Research with Parallel Solvers

Working with parallel solvers is far from trivial:

- 1. Must know on concurrency and parallel theory
- 2. Must know on parallel software languages and tools
- 3. Must know on hardware realizations for communication
- 4. Must know on communication protocols and networks
- 5. Programming is more error prone than in sequential
- 6. A parallel solver is hard to analyze
- 7. After all the work, maybe you are not gaining in time
- 8. Many people just don't want to know on parallel issues
- 9. ...

Parallel Experiences

<u>Index</u>

The Problem

Base Algorithms

The Platform

Parallel Solvers

Facts in PS Research

Software and PO

Summary

Research with Parallel Solvers

...but it is worthwile!

Problems not solved before become now solvable by using parallel solvers

Parallel Experiences

<u>Index</u>

The Problem

Base Algorithms

The Platform

Parallel Solvers

Facts in PS Research

Software and PO

Summary

Facts in Research with Parallel Solvers

Facts in parallel search:

- **1** Model & implementation are different
- **2** Metrics need a revision
- **B** Superlinear speedup is a fact
- **4** Heterogeneity is a must nowadays
- **5** The experimental setup is important
- **6** Algorithms are Software
- **Other facts**

E. Alba

Parallel Metaheuristics: A New Class of Algorithms Wiley, ISBN 0-471-67806-6, July 2005

G. Luque, E. Alba Parallel Genetic Algorithms: Theory and RW Applications Springer-Verlag, ISBN 978-3-642-22083-8, July 2011

Parallel Experiences

Fact 1: Model and Implementation are Different

Node in a decentralized EA

- ① Generate initial population
- **②** Evaluate present evaluation
- 3 While not stop criterion do:
 - **30** Select partners
 - 32 Apply variation operators
 - **33** Communication with neighbors
 - **34** Replace old solutions by the new ones
 - **3(5)** Compute statistics and performances

<u>Index</u>

The Problem

Base Algorithms

The Platform

Parallel Solvers

Facts in PS Research

Software and PO

Summary

Parallel Experiences

<u>Index</u>

The Problem

Base Algorithms

The Platform

Parallel Solvers

Facts in PS Research

Software and PO

Summary

Parallel Experiences

<u>Index</u>

The Problem

Base Algorithms

The Platform

Parallel Solvers

Facts in PS Research

Software and PO

Summary

Parallel Experiences

<u>Index</u>

The Problem

Base Algorithms

The Platform

Parallel Solvers

Facts in PS Research

Software and PO

Summary

Fact 2: Metrics Need a Revision

- Exact and approximate algorithms become different algorithms when run in parallel
- Specially, parallel nondeterministic algorithms can stop at solutions of very different quality
- Comparing times against the sequential version could be meaningless if the two algorithms are not exactly the same or the final solution quality is different

• A clear example is the speedup (efficiency)

- A taxonomy is needed
- I. Strong Speedup II. Weak Speedup

Alba E. (2002) "Parallel EAs Can Achieve SuperLinear Performance". *Information Processing Letters*, Elsevier, 82(1):7-13

- A. Speedup with solution-stop
 - 1. Versus Panmixia
 - 2. Orthodox
- **B. Speedup with predefined effort**

Parallel Experiences

<u>Index</u>

The Problem

Base Algorithms

The Platform

Parallel Solvers

Facts in PS Research

Software and PO

Summary

Fact 3: Superlinear Speedup is a Fact

$$\mathcal{S}(n_{proc}) = \frac{\overline{T_1}}{\overline{T_n}_{proc}}$$

weak1: against panmixia (1 proc) weak2: only changing *n*_{proc}

SPH16-32

SSS128

Parallel Experiences

<u>Index</u>

The Problem

Base Algorithms

The Platform

Parallel Solvers

Facts in PS Research

Software and PO

Summary

Fact 4: Heterogeneity is a Must Nowadays

Algorithmic components could be heterogeneous

Parallel hardware could be heterogeneous

Parallel **Experiences**

Index

Summary

Fact 4: Heterogeneity is a Must Nowadays

Parallel Experiences

<u>Index</u>

The Problem

Base Algorithms

The Platform

Parallel Solvers

Facts in PS Research

Software and PO

Summary

Fact 5: The Experimental Setup is Important

Parallel heuristic/exact methods have often nondeterministic behaviors, so:

- 1. Multiple independent runs are necessary
- 2. Statistical hypothesis tests must be used: Student *t*-test, ANOVA, Wilcoxon, ...
- 3. Average, max and min values need to be reported, but: is that all? Run times?
- 4. Advises: more than 30 ind. runs, give all the parameters in one table, always report on times, give hardware and software used, ...

Parallel Experiences

<u>Index</u>

The Problem

Base Algorithms

The Platform

Parallel Solvers

Facts in PS Research

Software and PO

Summary

Fact 6: Algorithms Are Software

We should worry about the design of algorithms

- At the end, they are software pieces (!)
- Take care of the design and take care of the documentation
- Efficiency is usually the more important issue

Traditional tools

- Fortran, C/C++, Java, Haskell, ...
- Generalization is in conflict with efficiency
- Apply well-accepted recomms. on GOTO, global vars, ...

Object Orientation

- Present best issue (long term development and design)
- Efficiency can be modulated
- Parallel software tools are developed nowadays
- Java versus C++

Alba E., Troya J.M., Gaining New Fields of Application for OOP: the Parallel Evolutionary Algorithm Case, *The Journal of Object-Oriented Programming*, December 2001

Parallel Experiences

Fact 6: Algorithms Are Software

Complex Data Structures for Complex Problems

Parallel **Experiences**

Index

Summary

Relevant Facts for Multiplicity Computing

Parallel Experiences

<u>Index</u>

The Problem

Base Algorithms

The Platform

Parallel Solvers

Facts in PS Research

Software and PO

Summary

• Theory is hard but important: convergence, time complexity, landscape theory, math oracles, ...

• Knowledge exchange between fields helps: developing common frameworks for grid algorithms, exact plus heuristic issues, ...

• Parallel algorithms are not always better: communication overhead, numerical search could progress slowly, ...

Be always ready for new facts!

21/03/2012

Other Facts

Parallel Experiences

<u>Index</u>

The Problem

Base Algorithms

The Platform

Parallel Solvers

Facts in PS Research

Software and PO

Summary

Software for Parallelism

There exist multiple software tools to develop parallel applications: Low level tools: Sockets, ... High Level Comm Libraries: PVM, MPI, ... Language Embedded: Java RMI, ... Middleware: CORBA, MANIFOLD, MR, ... **OpenCL** Metacomputing Systems: Globus, Condor, BOINC,net Related to Internet: .NET, SOAP, XML, ... Plateform specific: CUDA, OpenCL, Handle C, ... AVA Others: OpenMP, HPF, ...

Parallel **Experiences**

Index

Our Software

http://neo.lcc.uma.es/software/index/

Index	NEO - Our Software - Windows Internet Explorer	
	S S v ktp://neo.lcc.uma.es/software/index/	🔹 😔 😽 🗙 🚼 olivo espino caballo 🖉 🔻
	👷 Favoritos 😰 👻 🎇 Webmail SATD :: Entrada 🥳 últimas publicadas mené 🕼 ComdatA-09: Foro de noti 🎉 NEO - Our Software	x 🔄 🔹 🔊 🔹 🖶 👻 Página 🗙 Seguridad 🔻 Herramientas 🛛 🔞 💌
The Problem	NEO Welcome to the NEO Softwa	ire Area
Base Algorithms		
		Dur Software
The Platform	It´s our pleasure to welcome you to the NEO Software Area. This Site has been established to give you the ability to easily browse the many software we have developed.	Mallba 🗧
	The right menu will direct you to our different softwares and access their home pages.	ssGA
Parallel Solvers	the software you are viewing. Click on the NEO logo in the upper corner if you wish to visit the home page of our server.	JGDS
	If you have any question, or need assistance at any time, please do not hesitate to contact us. You will find details for the responsible staff in some sections.	xxGA
Facts in PS Research	Enjoy! :-)	JCell
		мнтв
Software and PO		DEME
		JMetal
Summary		More
		ES ~ 🔀 🛱 📶 🕕 11:57 11/03/2010
	21/03/2012	

Parallel Experiences

Index

The Problem

The Platform

Parallel Solvers

Base Algorithms

MALLBA

Library for complex optimization problems

- 3 types of techniques:
 - Exact
 - Heuristic
 - Hybrid
- 3 implementations:
 - Sequential
 - LAN
 - WAN

Goals:

•

- Wide genericiy but low effort of instantiation
- Simplified utilization (no parallel skills needed)
- Geographically distributed computing systems

E. Alba, et al., MALLBA: A Library of Skeletons for Combinatorial Optimisation, *Proceedings of the Euro-Par*, Paderborn (GE), LNCS 2400, pp. 927-932, 2002

Move

UML design of SA in MALLBA

21/03/2012

Facts in PS Research

Software and PO

Summary

Parallel Experiences

R.O.S.

Parallel Experiences

<u>Index</u>

The Problem

Base Algorithms

The Platform

Parallel Solvers

Facts in PS Research

Software and PO

Summary

New Technologies Are Revitalizing this Field

Research in either separate or join levels of parallelism is welcome in companies and journals

Grid and cloud computing

FPGA

GPU

Parallel Experiences

<u>Index</u>

The Problem

Base Algorithms

The Platform

Parallel Solvers

Facts in PS Research

Software and PO

Summary

Summary of Challenges

- 1. Parallel solvers are not just fast versions of sequential solvers: they are new algorithms
- 2. Create standard benchmarking for parallel search
- 3. Develop a uniform experimental setup methodology in which metrics and statistics have a niche
- 4. Connect the solver field to the application field, and to the software domain: metrics for OO, parallelization of compilers, automatic testing, optimized software protocols, scheduling...
- 5. Tackle new issues in cloud computing
- 6. New research fields: GPGPU, Multicores, programming
- 7. Create a body of knowledge in parallel algorithmics independently of their applications

Parallel Experiences

<u>Index</u>

The Problem

Base Algorithms

The Platform

Parallel Solvers

Facts in PS Research

Software and PO

Summary

End of Presentation

Málaga

