Testing and Verifying
Atomicity of Composed
Concurrent Operations

Ohad Shacham
Nathan Bronson
Alex Aiken
Mooly Sagiv
Martin Vechev
Eran Yahav

Tel Aviv University
Stanford University
Stanford University
Tel Aviv University

ETH

Technion



Concurrent Data Structures

« Writing highly concurrent data structures is complicated

* Modern programming languages provide efficient
concurrent collections with atomic operations




TOMCAT Motivating Example

TOMCAT b.*

Attribute removeAttribute(String name){
Attribute val = null;

found = attr.containsKey(name) ;
if (found) {
val = attr.get(name);
attr.remove(name);

}

return val;

}

Invariant: removeAttribute(name) returns the removed
value or null if it does not exist



removeAttribute(“A”) {
Attribute val = null;

< attr.put(“A”, o);

found = attr.containsKey(“A”) ;
if (found) {
val = attr.get(“A”);

< attr.remove(“A”);

attr.remove(“A”);

}

return val; 9

Invariant: removeAttribute(name) returns the removed
value or null if it does not exist



Challenge

Testing and Verifying the atomicity of
composed operations




Challenges in Testing

Specifying software correctness

Bugs occur in rarely executed traces
— Especially true in concurrent systems

Scalability of dynamic checking
— large traces

Hard to find programs to test



Challenges in Verification

Specifying software correctness
Many sources of unboundedness
— Data
* Integers
« Stack
* Heap
— Interleavings
Scalability of static checking
— Large programs
Hard to find programs to verify



Testing atomicity of
composed operations

OOPSLA11



Challenge 1: Long traces

* Assume that composed operations are written
Inside encapsulated methods

« Modular testing
— Unit testing in all contexts

— Composed operations need to be correct in all
contexts

« May lead to false warnings



False Warning

If (m.contains(k))
return m.get(k);
else
return k;

< m.remove(k);

« False warning in clients without remove
« Sometimes indicate “future bugs”



Challenge 2: Specification

* Check that composed operations are
Linearizable [Herlihy & Wing, TOPLAS'90]

— Returns the same result as some sequential run



Linearizability

removeAttribute(“A”) {
Attribute val = null;

< attr.put(“A”, o); null
found = attr.containsKey(“A”) ;
if (found) {
val = attr.get(“A”);
attr.remove(“A”); o)

attr.remove(“A”);

}

return val; o)

attr.put(“A”, o); |null removeAttribute(“A”) { attr.put("A”, 0); |yl
AN, Attribute val = null; removeAttribute(“A”) {
ttr. A”); i
arr remc?ve( sl o found = attr.containsKey(“A”) ; Attribute val = null;
removeAttribute(“A”) { if (found) { found = attr.containsKey(“A”) ;
Attribute val = null; return val: null if (found) {
found = attr.containsKey(“A”) ; — | = attr.qet(“A”):
- attr.put(“A”, o); val = attr.get(“A”);
if (found) { pul( ) null attr.remove(“A”);
return val; null attr.remove(“A”); [ }
return val; 0

attr.remove(“A”); [l



But Linearizability errors only occur In
rarely executed paths
|

removeAttribute(“A”) {
Attribute val = null;

< attr.put(“A”, o);

found = attr.containsKey(“A”) ;
If (found) {
val = attr.get(“A”);

< attr.remove(“A”);

attr.remove(“A”);

}

return val;




Linearizabllity errors only occur in rarely
executed path

* Only consider “atomic” executions of the base
collection operation [TACAS'10, Ball et. al.]

« Employ commutativity/influence of base
collection operations

— Operations on different key commute
— Partial order reduction using the collection interface



Influence table

Operation Condition Potential Action
get(k) get(k) == null put(k,*)

get(k) get(k) '= null remove(k)
containsKey(k) get(k) == null put(k,*)
containsKey(k) get(k) '= null remove(k)
remove(k) get(k) == null put(k,*)
remove(k) get(k) '= null remove(k)




COLT Tester

Q-
rogra
co ]
extractor
3 library
spe
Cargj(vi)date Timeout Non-Lin
/ S ( v V\/

- €O instrument A _
key/value driver linearizability Execution
influence driver checking T




Attribute removeAttribute(String name){

Attribute val = null;
found = attr.containsKey(name) ;
if (found) {
val = attr.get(name);
attr.remove(name);

}

return val;

}

removeAttribute(“A”) {
Attribute val = null;

<

found = attr.containsKey(“A”) ;

If (found) {

val = attr.get(“A”);

attr.remove(“A”);

}

return val;

attr.put(“A”, o);

attr.remove(“A”);

null




removeAttribute(“A”) {
Attribute val = null;

< attr.put(“A”, o); null
found = attr.containsKey(“A”) ;
If (found) {
val = attr.get(“A”);
< attr.remove(“A”); 0
attr.remove(“A”);
}
return val; 0
| ] | ] | | || | | | ] | ] | | || | | | ] | ] | | || | | | |
attr.put(“A”, 0), null removeAttribute(“A”) { attr.put(“A”, 0), null
AN, Attribute val = null; removeAttribute(“A”) {
ttr. A
attr remc?ve( )i | o found = attr.containsKey(“A”) ; Attribute val = null;
removeAttribute(“A”) { if (found) { found = attr.containsKey(“A”) ;
Attribute val = null; return val; null if (found) {
found = at.tr.contalnSKe)’( A ) ; attr_put(“A”, O), il val = attr.get(“A”);
if (found) { attr.remove(“A”);
return val; null attr.remove(“A”); | o }
return val; 0

attr.remove(“A”); [l



Evaluation

Use Google code search and Koders to search for
collection operations methods with at least two
operations

Used simple static analysis to extract composed
operations
— 29% needed manual modification

Check Linearizability of all public domain composed

Extracted 112 composed operations from 55 applications
— Apache Tomcat, Cassandra, MyFaces — Trinidad, ...

Each run took less than a second
Without influence timeout always occur






53

Non Unknown
Linearizable




53

Unknown

Non
Linearizable




31
Linearizable

Non
Linearizable




Linearizable

81
Non-Linearizable




Results

* Reported the bugs with fixes
* Even bugs in open environment

« As a result of the paper the Java library is being
changed

“A preliminary version is in the pre-java8 "jsr166e" package

as ConcurrentHashMapV8. We can't release the actual version
yet because it relies on Java8 lambda (closure) syntax support.
See links from
http://gee.cs.oswego.edu/dl/concurrency-interest/index.html
including:
http://gee.cs.oswego.edu/dl/jsr166/dist/jsr166edocs/|sr166e/Co
ncurrentHashMapV8.html

Good luck continuing to find errors and misuses that can
help us create better concurrency components!”


http://gee.cs.oswego.edu/dl/concurrency-interest/index.html
http://gee.cs.oswego.edu/dl/concurrency-interest/index.html
http://gee.cs.oswego.edu/dl/concurrency-interest/index.html
http://gee.cs.oswego.edu/dl/jsr166/dist/jsr166edocs/jsr166e/ConcurrentHashMapV8.html
http://gee.cs.oswego.edu/dl/jsr166/dist/jsr166edocs/jsr166e/ConcurrentHashMapV8.html
http://gee.cs.oswego.edu/dl/jsr166/dist/jsr166edocs/jsr166e/ConcurrentHashMapV8.html
http://gee.cs.oswego.edu/dl/jsr166/dist/jsr166edocs/jsr166e/ConcurrentHashMapV8.html
http://gee.cs.oswego.edu/dl/jsr166/dist/jsr166edocs/jsr166e/ConcurrentHashMapV8.html
http://gee.cs.oswego.edu/dl/jsr166/dist/jsr166edocs/jsr166e/ConcurrentHashMapV8.html
http://gee.cs.oswego.edu/dl/jsr166/dist/jsr166edocs/jsr166e/ConcurrentHashMapV8.html
http://gee.cs.oswego.edu/dl/jsr166/dist/jsr166edocs/jsr166e/ConcurrentHashMapV8.html
http://gee.cs.oswego.edu/dl/jsr166/dist/jsr166edocs/jsr166e/ConcurrentHashMapV8.html
http://gee.cs.oswego.edu/dl/jsr166/dist/jsr166edocs/jsr166e/ConcurrentHashMapV8.html

Verifying atomicity of
composed operations



Motivation

« Unbounded number of potential composed
operations
— There exists no “thick” interface

« Automatically prove Linearizability for composed
operations beyond the ones provided
— Already supports the existing interface
— No higher order functions

« Zero false alarms (beyond modularity)



Data independent [Wolper, POPL’86]

Attribute removeAttribute(String name){
Attribute val = null;
found = attr.containsKey(name) ;
If (found) {
val = attr.get(name);
attr.remove(name);

}

return val:

}



Verifying data independent operations using
Linearization points in the code

Single Mutation
Data independent - Verified using single input

|

CO adds one value
<I\/Iapelements are boD




Verifying data independent operations

Small model reduction
Decidable when the local state is bounded

Explore all possible executions using:
— One input key and finite number of values
— Influenced based environment uses single value

Employ SPIN



Data-Dependent
54%




Fom VCM

Data-Dependent Non-Linearizable




¢

program
Composed
Operation
extractor
Q- Library
spec +
candidate
COs

Data Independent
verifier

SCM/FCM No SCM
‘e Input keys/values A

z.——”' g.——"
CO cCo
Input keys/values key/value driver
Influence driver Influence driver
Linearizability Linearizability
verifier tester
\. generator generator
¢ Promela Java¢

Lin Unknown
SPIN Execution
Non-Lin Non-Lin




Linearizable

81
Non-Linearizable




Summary

Writing concurrent data structures is hard
Employing atomic library operations is error prone
Modular linearizability checking

Leverage influence

Leverage data independence

Sweet spot

— ldentify important bugs together with a traces showing and
explaining the violations

— Hard to find
— Prove the linearizability of several composed operations
— Simple and efficient technique



