
 Aditya V. Nori, Sriram K. Rajamani
Programming Languages and Tools

Microsoft Research India

 An industrial strength program verifier

 Philosophy: Synergize verification and testing

 Synergy [FSE ’06], Dash [ISSTA ‘08], Smash [POPL
‘10], Bolt [submitted] algorithms to perform
scalable analysis

 Engineered a number of optimizations for
scalability

 Integrated with Microsoft’s Static Driver Verifier
(SDV) toolkit and used internally

void f(int *p, int *q)
{
0: *p = 4;
1: *q = 5;

2: assert (¬𝜑𝑒𝑟𝑟𝑜𝑟)
}

Question
Does the assertion hold for all possible inputs?

Must analysis: finds bugs, but can’t prove their

absence

May analysis: can prove the absence of bugs,

but can result in false errors

More generally, we are interested in the query

〈𝜑𝑝𝑟𝑒

?
 𝑓 𝜑𝑒𝑟𝑟𝑜𝑟〉

𝑇
?
 𝑓 ∗ 𝑝 ≠ 4 = 𝑦𝑒𝑠

• Captures facts that are guaranteed to hold on particular

executions of the program (under-approximation)

• Error condition is reachable by any input that satisfies (𝑝 = 𝑞)

⊆ ∗ 𝑝 ≠ 4

= (𝑝 = 𝑞) void f(int *p, int*q)
{
0: *p = 4;
1: *q = 5;
}

test

𝑝 ≠ 𝑞
?
 𝑓 ∗ 𝑝 ≠ 4 = 𝑛𝑜 proof

0

1

(𝑝 ≠ 𝑞)

(𝑝 ≠ 𝑞)

(∗ 𝑝 ≠ 4) 2

1 (𝑝 = 𝑞)

• Captures facts that are true for all executions of the

program (over-approximation)

• Proof can be obtained by keeping track of the predicates

(𝑝 = 𝑞) and (∗ 𝑝 ≠ 4)

void f(int *p, int*q)
{
0: *p = 4;
1: *q = 5;
}

 Algorithm uses only test case generation

operations

 Maintains two data structures:

▪ A forest of reachable concrete states (tests)

▪ Under-approximates executions of the program

▪ A region graph (an abstraction)

▪ Over-approximates all executions of the program

 Our goal: bug finding and proving

▪ If a test reaches an error, we have found bug

▪ If we refine the abstraction so that there is *no* path

from the initial region to error region, we have a

proof

 Key ideas

▪ Frontier

▪ 𝑊𝑃𝛼 uses only aliases α that are present along

concrete tests that are executed

Step 1: Try to generate a test

that crosses the frontier

 Perform symbolic

simulation on the path

until the frontier and

generate a constraint 𝜑1

 Conjoin with the condition

 𝜑2 needed to cross

frontier

 Is 𝜑1∧ 𝜑2 satisfiable?

frontier

0

1

2

3

4

7

8

9

5

6

10

𝜑2

𝜑1

Step 1: Try to generate a test

that crosses the frontier

 Perform symbolic

simulation on the path

until the frontier and

generate a constraint 𝜑1

 Conjoin with the condition

 𝜑2 needed to cross

frontier

 Is 𝜑1∧ 𝜑2 satisfiable? [YES]

Step 2: run the test and

extend the frontier

0

1

2

3

4

7

8

9

5

6

10

frontier

Step 1: Try to generate a test
that crosses the frontier

 Perform symbolic
simulation on the path
until the frontier and
generate a constraint 𝜑1

 Conjoin with the condition
 𝜑2 needed to cross
frontier

 Is 𝜑1∧ 𝜑2 satisfiable? [NO]

Step 2: use 𝑊𝑃𝛼 to refine so
that the frontier moves
back!

frontier

0

1

2

3

4

7

8

9

5

6

10

4

 Can extend

test beyond

frontier?

Refine abstraction

Construct initial abstraction

Construct random tests

Test

succeeded?
Bug!

Abstraction

succeeded?

 τ = error path in abstraction

 f = frontier of error path

yes

no

 yes

no

Proof!
 yes

no

Input:

Program 𝑷

Property 𝝍

void f(int y)
{
0: int lock, x;
1: do {
2: lock = 1;
3: x = y;
4: if (*) {
5: lock = 0;
6: y = y+1;
 }
7: } while (x != y)
8: if (lock != 1)
9: error();
10:
}

0
1

2

3

4

5

6

7

8

9

×

10

𝑦 = 1

𝜏 = (0,1,2,3,4,7,8,9)

frontier

Symbolic execution +

Theorem proving

8

9

8:¬ρ 8:ρ

9

refine

𝜌 = (𝑙𝑜𝑐𝑘. 𝑠𝑡𝑎𝑡𝑒 ! = 𝐿)

0
1

2

3

4

5

6

7

8

9

10

8

9

8:¬p 8:p

9

refine

p= (𝑙𝑜𝑐𝑘. 𝑠𝑡𝑎𝑡𝑒 ! = 𝐿)

0
1

2

3

4

5

6

7

9

10

8:¬𝑝 8:p

 Can extend

test beyond

frontier?

Refine abstraction

Construct initial abstraction

Construct random tests

Test

succeeded?
Bug!

Abstraction

succeeded?

 τ = error path in abstraction

 f = frontier of error path

yes

no

 yes

no

Proof!
 yes

no

Input:

Program 𝑷

Property 𝝍

void f(int y)
{
0: int lock, x;
1: do {
2: lock = 1;
3: x = y;
4: if (*) {
5: lock = 0;
6: y = y+1;
 }
7: } while (x != y)
8: if (lock != 1)
9: error();
10:
}

×

frontier

0
1

2

3

4

5

6

7

9

10

8:¬𝑝 8:p

𝜏 = (0,1,2,3,4,7, < 8, 𝑝 >, 9)

void f(int y)
{
0: int lock, x;
1: do {
2: lock = 1;
3: x = y;
4: if (*) {
5: lock = 0;
6: y = y+1;
 }
7: } while (x != y)
8: if (lock != 1)
9: error();
10:
}

0

1

2

3

4⋀¬s

5⋀¬s

6⋀¬r

9

7⋀¬q

8⋀¬p

4⋀s

5⋀s

6⋀r

7⋀q

8⋀p

10

Sk-2 T

Sk-1

𝐶𝐴𝐿𝐿(𝑓𝑜𝑜(𝑖, 𝑗))

Sk

frontier

Key idea

Perform a recursive Dash query

on the called procedure and use

the result to either generate a

test or compute 𝑊𝑃𝛼

Sk-2 T

Sk-1

𝐶𝐴𝐿𝐿(𝑓𝑜𝑜(𝑖, 𝑗))

Sk

1

2

Dash〈𝜑1

?
 𝑓𝑜𝑜 𝜑2〉

- pass: perform refinement

- fail: generate test

• A must summary for a procedure 𝒫𝑖 is of

the form 𝜑1, 𝜑2 ∈
𝑚𝑢𝑠𝑡

𝒫𝑖

• ∀𝑡 ∈ 𝜑2 . ∃𝑠 ∈ 𝜑1 . 𝑡 can be obtained by

executing 𝒫𝑖 from an initial state 𝑠

𝒫𝑖

𝜑1

𝜑2

must summary

• A ¬𝑚𝑎𝑦 𝑠𝑢𝑚𝑚𝑎𝑟𝑦 for a procedure 𝒫𝑖 is of

the form 𝜑1, 𝜑2 ∈
¬𝑚𝑎𝑦

𝒫𝑖

• ∀𝑠 ∈ 𝜑1 ∀𝑡 ∈ 𝜑2 . 𝑡 cannot be obtained by

executing 𝒫𝑖 starting in state 𝑠
𝒫𝑖

𝜑1

𝜑2

¬𝑚𝑎𝑦 𝑠𝑢𝑚𝑚𝑎𝑟𝑦

𝜑1 ∈ Π𝑛1
 𝜑2 ∈ Π𝑛2

 𝜑1 ∩ Ω𝑛1
≠ ∅ 𝜑2 ∩ Ω𝑛2

= ∅

𝑒 = (𝑛1, 𝑛2) ∈ 𝐸𝒫𝑖
 𝑖𝑠 𝑎 𝑐𝑎𝑙𝑙 𝑡𝑜 𝑝𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑒 𝒫𝑗

𝜑 1, 𝜑 2 ∈
𝑚𝑢𝑠𝑡

𝒫𝑗
 Ω𝑛1

⊇ 𝜑 1 𝜃 ⊆ 𝜑 2 𝜑2 ∩ 𝜃 ≠ ∅

Ω𝑛2
≔ Ω𝑛2

∪ 𝜃
 [MUST − POST − USESUM]

• Check if frontier (𝑛1, 𝑛2) can be extended by a

must summary 𝜑 1, 𝜑 2

• If yes, grow Ω𝑛2
with 𝜃 ⊆ 𝜑 2

𝒫𝑗

𝜑 1 ⊆ Ω𝑛1

(𝜑 2⊇ 𝜃) ∧ (𝜑2 ∩ 𝜃 ≠ ∅)

must summary

Γ𝑒 = 𝑐𝑎𝑙𝑙 𝒫𝑗

procedure 𝒫𝑖

0

1

2

4

6

7

3

5

𝜑 2

𝑇

𝑇

𝜑1

𝑇

𝑇 𝑇

frontier

Ω𝑛1

𝜑2

𝜑1 ∈ Π𝑛1
 𝜑2 ∈ Π𝑛2

 𝜑1 ∩ Ω𝑛1
≠ ∅ 𝜑2 ∩ Ω𝑛2

= ∅

𝑒 = (𝑛1, 𝑛2) ∈ 𝐸𝒫𝑖
 𝑖𝑠 𝑎 𝑐𝑎𝑙𝑙 𝑡𝑜 𝑝𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑒 𝒫𝑗

𝜑 1, 𝜑 2 ∈
𝑚𝑢𝑠𝑡

𝒫𝑗
 Ω𝑛1

⊇ 𝜑 1 𝜃 ⊆ 𝜑 2 𝜑2 ∩ 𝜃 ≠ ∅

Ω𝑛2
≔ Ω𝑛2

∪ 𝜃
 [MUST − POST − USESUM]

• Check if frontier (𝑛1, 𝑛2) can be extended by a

must summary 𝜑 1, 𝜑 2

• If yes, grow Ω𝑛2
with 𝜃 ⊆ 𝜑 2

procedure 𝒫𝑖

0

1

2

4

6

7

3

5

𝜑 2

𝑇

𝑇

𝜑1

𝜑2 𝑇

𝑇 𝑇

frontier

Ω𝑛1

𝜃

Γ𝑒 = 𝑐𝑎𝑙𝑙 𝒫𝑗

𝒫𝑗

𝜑 1 ⊆ Ω𝑛1

(𝜑 2⊇ 𝜃) ∧ (𝜑2 ∩ 𝜃 ≠ ∅)

must summary

𝜑1 ∈ Π𝑛1
 𝜑2 ∈ Π𝑛2

 𝜑1 ∩ Ω𝑛1
≠ ∅ 𝜑2 ∩ Ω𝑛2

= ∅

 𝑒 = (𝑛1, 𝑛2) ∈ 𝐸𝒫𝑖
 𝑖𝑠 𝑎 𝑐𝑎𝑙𝑙 𝑡𝑜 𝑝𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑒 𝒫𝑗

𝜑 1, 𝜑 2 ∈
¬𝑚𝑎𝑦

𝒫𝑗
 𝜑2 ⊆ 𝜑 2 𝜃 ⊆ 𝜑 1 ¬𝜃 ∩ Ω𝑛1 = ∅

Π𝑛1
≔ Π𝑛1

∖ 𝜑1 ∪ 𝜑1 ∩ 𝜃,𝜑1 ∩ ¬𝜃 𝑁𝑒 ≔ 𝑁𝑒 ∪ { 𝜑1 ∩ 𝜃, 𝜑2 }
 [NMAY − PRE − USESUM]

• Check if frontier (𝑛1, 𝑛2) can be refined by a

¬𝑚𝑎𝑦 𝑠𝑢𝑚𝑚𝑎𝑟𝑦 𝜑 1, 𝜑 2

• If yes, use 𝜃 ⊆ 𝜑 1to refine the abstraction

• If both must and ¬𝑚𝑎𝑦 summaries are not

available, analyze procedure 𝒫𝑗

• 𝑦𝑒𝑠 𝑚𝑢𝑠𝑡 𝑠𝑢𝑚𝑚𝑎𝑟𝑦 for 𝒫𝑗

• 𝑛𝑜 ¬𝑚𝑎𝑦 𝑠𝑢𝑚𝑚𝑎𝑟𝑦 for 𝒫𝑗

0

1

2

4

6

7

3

5

𝜑 2

𝑇

𝑇

𝑇

𝑇 𝑇

2
𝑁𝑒

𝜑1 ∩ 𝜃 𝜑1 ∩ ¬𝜃

frontier

𝜑2

procedure 𝒫𝑖

Γ𝑒 = 𝑐𝑎𝑙𝑙 𝒫𝑗 Γ𝑒 = 𝑐𝑎𝑙𝑙 𝒫𝑗

𝒫𝑗

(𝜑 1 ⊇ 𝜃) ∧ (¬𝜃 ∩ Ω𝑛1 = ∅)

𝜑 2 ⊇ 𝜑2

¬𝑚𝑎𝑦 𝑠𝑢𝑚𝑚𝑎𝑟𝑦

 Engineering for making Yogi robust, scalable and industrial
strength

 Several of the implemented optimizations are folklore
 Very difficult to design tools that are bug free evaluating

optimizations is hard!

 Our empirical evaluation gives tool builders information about
what gains can be realistically expected from optimizations

 Details in ICSE ‘10

 Vanilla implementation of algorithms:
 (flpydisk, CancelSpinLock) took 2 hours

 Algorithms + engineering + optimizations:

 (flpydisk, CancelSpinLock) took less than 1 second!

 Benchmarks:

 30 WDM drivers and 83 properties (2490 runs)

 Anecdotal belief: most bugs in the tools are

usually caught with this test suite

Summaries Total time

(minutes)

#defects #timeouts

yes 2160 241 77

no 3780 236 165

42%

 Bolt: a generic

framework that uses

MapReduce style

parallelism to scale

top-down analysis

Intraprocedural parameter

Summary database

~Linear speedup!

PLDI 2012 tutorial
http://research.microsoft.com/yogi/pldi2012.aspx

http://research.microsoft.com/yogi/pldi2012.aspx

