
 Aditya V. Nori, Sriram K. Rajamani
Programming Languages and Tools

Microsoft Research India

 An industrial strength program verifier

 Philosophy: Synergize verification and testing

 Synergy [FSE ’06], Dash [ISSTA ‘08], Smash [POPL
‘10], Bolt [submitted] algorithms to perform
scalable analysis

 Engineered a number of optimizations for
scalability

 Integrated with Microsoft’s Static Driver Verifier
(SDV) toolkit and used internally

void f(int *p, int *q)
{
0: *p = 4;
1: *q = 5;

2: assert (¬𝜑𝑒𝑟𝑟𝑜𝑟)
}

Question
Does the assertion hold for all possible inputs?

Must analysis: finds bugs, but can’t prove their

absence

May analysis: can prove the absence of bugs,

but can result in false errors

More generally, we are interested in the query

〈𝜑𝑝𝑟𝑒

?
 𝑓 𝜑𝑒𝑟𝑟𝑜𝑟〉

𝑇
?
 𝑓 ∗ 𝑝 ≠ 4 = 𝑦𝑒𝑠

• Captures facts that are guaranteed to hold on particular

executions of the program (under-approximation)

• Error condition is reachable by any input that satisfies (𝑝 = 𝑞)

⊆ ∗ 𝑝 ≠ 4

= (𝑝 = 𝑞) void f(int *p, int*q)
{
0: *p = 4;
1: *q = 5;
}

test

𝑝 ≠ 𝑞
?
 𝑓 ∗ 𝑝 ≠ 4 = 𝑛𝑜 proof

0

1

(𝑝 ≠ 𝑞)

(𝑝 ≠ 𝑞)

(∗ 𝑝 ≠ 4) 2

1 (𝑝 = 𝑞)

• Captures facts that are true for all executions of the

program (over-approximation)

• Proof can be obtained by keeping track of the predicates

(𝑝 = 𝑞) and (∗ 𝑝 ≠ 4)

void f(int *p, int*q)
{
0: *p = 4;
1: *q = 5;
}

 Algorithm uses only test case generation

operations

 Maintains two data structures:

▪ A forest of reachable concrete states (tests)

▪ Under-approximates executions of the program

▪ A region graph (an abstraction)

▪ Over-approximates all executions of the program

 Our goal: bug finding and proving

▪ If a test reaches an error, we have found bug

▪ If we refine the abstraction so that there is *no* path

from the initial region to error region, we have a

proof

 Key ideas

▪ Frontier

▪ 𝑊𝑃𝛼 uses only aliases α that are present along

concrete tests that are executed

Step 1: Try to generate a test

that crosses the frontier

 Perform symbolic

simulation on the path

until the frontier and

generate a constraint 𝜑1

 Conjoin with the condition

 𝜑2 needed to cross

frontier

 Is 𝜑1∧ 𝜑2 satisfiable?

frontier

0

1

2

3

4

7

8

9

5

6

10

𝜑2

𝜑1

Step 1: Try to generate a test

that crosses the frontier

 Perform symbolic

simulation on the path

until the frontier and

generate a constraint 𝜑1

 Conjoin with the condition

 𝜑2 needed to cross

frontier

 Is 𝜑1∧ 𝜑2 satisfiable? [YES]

Step 2: run the test and

extend the frontier

0

1

2

3

4

7

8

9

5

6

10

frontier

Step 1: Try to generate a test
that crosses the frontier

 Perform symbolic
simulation on the path
until the frontier and
generate a constraint 𝜑1

 Conjoin with the condition
 𝜑2 needed to cross
frontier

 Is 𝜑1∧ 𝜑2 satisfiable? [NO]

Step 2: use 𝑊𝑃𝛼 to refine so
that the frontier moves
back!

frontier

0

1

2

3

4

7

8

9

5

6

10

4

 Can extend

test beyond

frontier?

Refine abstraction

Construct initial abstraction

Construct random tests

Test

succeeded?
Bug!

Abstraction

succeeded?

 τ = error path in abstraction

 f = frontier of error path

yes

no

 yes

no

Proof!
 yes

no

Input:

Program 𝑷

Property 𝝍

void f(int y)
{
0: int lock, x;
1: do {
2: lock = 1;
3: x = y;
4: if (*) {
5: lock = 0;
6: y = y+1;
 }
7: } while (x != y)
8: if (lock != 1)
9: error();
10:
}

0
1

2

3

4

5

6

7

8

9

×

10

𝑦 = 1

𝜏 = (0,1,2,3,4,7,8,9)

frontier

Symbolic execution +

Theorem proving

8

9

8:¬ρ 8:ρ

9

refine

𝜌 = (𝑙𝑜𝑐𝑘. 𝑠𝑡𝑎𝑡𝑒 ! = 𝐿)

0
1

2

3

4

5

6

7

8

9

10

8

9

8:¬p 8:p

9

refine

p= (𝑙𝑜𝑐𝑘. 𝑠𝑡𝑎𝑡𝑒 ! = 𝐿)

0
1

2

3

4

5

6

7

9

10

8:¬𝑝 8:p

 Can extend

test beyond

frontier?

Refine abstraction

Construct initial abstraction

Construct random tests

Test

succeeded?
Bug!

Abstraction

succeeded?

 τ = error path in abstraction

 f = frontier of error path

yes

no

 yes

no

Proof!
 yes

no

Input:

Program 𝑷

Property 𝝍

void f(int y)
{
0: int lock, x;
1: do {
2: lock = 1;
3: x = y;
4: if (*) {
5: lock = 0;
6: y = y+1;
 }
7: } while (x != y)
8: if (lock != 1)
9: error();
10:
}

×

frontier

0
1

2

3

4

5

6

7

9

10

8:¬𝑝 8:p

𝜏 = (0,1,2,3,4,7, < 8, 𝑝 >, 9)

void f(int y)
{
0: int lock, x;
1: do {
2: lock = 1;
3: x = y;
4: if (*) {
5: lock = 0;
6: y = y+1;
 }
7: } while (x != y)
8: if (lock != 1)
9: error();
10:
}

0

1

2

3

4⋀¬s

5⋀¬s

6⋀¬r

9

7⋀¬q

8⋀¬p

4⋀s

5⋀s

6⋀r

7⋀q

8⋀p

10

Sk-2 T

Sk-1

𝐶𝐴𝐿𝐿(𝑓𝑜𝑜(𝑖, 𝑗))

Sk

frontier

Key idea

Perform a recursive Dash query

on the called procedure and use

the result to either generate a

test or compute 𝑊𝑃𝛼

Sk-2 T

Sk-1

𝐶𝐴𝐿𝐿(𝑓𝑜𝑜(𝑖, 𝑗))

Sk

1

2

Dash〈𝜑1

?
 𝑓𝑜𝑜 𝜑2〉

- pass: perform refinement

- fail: generate test

• A must summary for a procedure 𝒫𝑖 is of

the form 𝜑1, 𝜑2 ∈
𝑚𝑢𝑠𝑡

𝒫𝑖

• ∀𝑡 ∈ 𝜑2 . ∃𝑠 ∈ 𝜑1 . 𝑡 can be obtained by

executing 𝒫𝑖 from an initial state 𝑠

𝒫𝑖

𝜑1

𝜑2

must summary

• A ¬𝑚𝑎𝑦 𝑠𝑢𝑚𝑚𝑎𝑟𝑦 for a procedure 𝒫𝑖 is of

the form 𝜑1, 𝜑2 ∈
¬𝑚𝑎𝑦

𝒫𝑖

• ∀𝑠 ∈ 𝜑1 ∀𝑡 ∈ 𝜑2 . 𝑡 cannot be obtained by

executing 𝒫𝑖 starting in state 𝑠
𝒫𝑖

𝜑1

𝜑2

¬𝑚𝑎𝑦 𝑠𝑢𝑚𝑚𝑎𝑟𝑦

𝜑1 ∈ Π𝑛1
 𝜑2 ∈ Π𝑛2

 𝜑1 ∩ Ω𝑛1
≠ ∅ 𝜑2 ∩ Ω𝑛2

= ∅

𝑒 = (𝑛1, 𝑛2) ∈ 𝐸𝒫𝑖
 𝑖𝑠 𝑎 𝑐𝑎𝑙𝑙 𝑡𝑜 𝑝𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑒 𝒫𝑗

𝜑 1, 𝜑 2 ∈
𝑚𝑢𝑠𝑡

𝒫𝑗
 Ω𝑛1

⊇ 𝜑 1 𝜃 ⊆ 𝜑 2 𝜑2 ∩ 𝜃 ≠ ∅

Ω𝑛2
≔ Ω𝑛2

∪ 𝜃
 [MUST − POST − USESUM]

• Check if frontier (𝑛1, 𝑛2) can be extended by a

must summary 𝜑 1, 𝜑 2

• If yes, grow Ω𝑛2
with 𝜃 ⊆ 𝜑 2

𝒫𝑗

𝜑 1 ⊆ Ω𝑛1

(𝜑 2⊇ 𝜃) ∧ (𝜑2 ∩ 𝜃 ≠ ∅)

must summary

Γ𝑒 = 𝑐𝑎𝑙𝑙 𝒫𝑗

procedure 𝒫𝑖

0

1

2

4

6

7

3

5

𝜑 2

𝑇

𝑇

𝜑1

𝑇

𝑇 𝑇

frontier

Ω𝑛1

𝜑2

𝜑1 ∈ Π𝑛1
 𝜑2 ∈ Π𝑛2

 𝜑1 ∩ Ω𝑛1
≠ ∅ 𝜑2 ∩ Ω𝑛2

= ∅

𝑒 = (𝑛1, 𝑛2) ∈ 𝐸𝒫𝑖
 𝑖𝑠 𝑎 𝑐𝑎𝑙𝑙 𝑡𝑜 𝑝𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑒 𝒫𝑗

𝜑 1, 𝜑 2 ∈
𝑚𝑢𝑠𝑡

𝒫𝑗
 Ω𝑛1

⊇ 𝜑 1 𝜃 ⊆ 𝜑 2 𝜑2 ∩ 𝜃 ≠ ∅

Ω𝑛2
≔ Ω𝑛2

∪ 𝜃
 [MUST − POST − USESUM]

• Check if frontier (𝑛1, 𝑛2) can be extended by a

must summary 𝜑 1, 𝜑 2

• If yes, grow Ω𝑛2
with 𝜃 ⊆ 𝜑 2

procedure 𝒫𝑖

0

1

2

4

6

7

3

5

𝜑 2

𝑇

𝑇

𝜑1

𝜑2 𝑇

𝑇 𝑇

frontier

Ω𝑛1

𝜃

Γ𝑒 = 𝑐𝑎𝑙𝑙 𝒫𝑗

𝒫𝑗

𝜑 1 ⊆ Ω𝑛1

(𝜑 2⊇ 𝜃) ∧ (𝜑2 ∩ 𝜃 ≠ ∅)

must summary

𝜑1 ∈ Π𝑛1
 𝜑2 ∈ Π𝑛2

 𝜑1 ∩ Ω𝑛1
≠ ∅ 𝜑2 ∩ Ω𝑛2

= ∅

 𝑒 = (𝑛1, 𝑛2) ∈ 𝐸𝒫𝑖
 𝑖𝑠 𝑎 𝑐𝑎𝑙𝑙 𝑡𝑜 𝑝𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑒 𝒫𝑗

𝜑 1, 𝜑 2 ∈
¬𝑚𝑎𝑦

𝒫𝑗
 𝜑2 ⊆ 𝜑 2 𝜃 ⊆ 𝜑 1 ¬𝜃 ∩ Ω𝑛1 = ∅

Π𝑛1
≔ Π𝑛1

∖ 𝜑1 ∪ 𝜑1 ∩ 𝜃,𝜑1 ∩ ¬𝜃 𝑁𝑒 ≔ 𝑁𝑒 ∪ { 𝜑1 ∩ 𝜃, 𝜑2 }
 [NMAY − PRE − USESUM]

• Check if frontier (𝑛1, 𝑛2) can be refined by a

¬𝑚𝑎𝑦 𝑠𝑢𝑚𝑚𝑎𝑟𝑦 𝜑 1, 𝜑 2

• If yes, use 𝜃 ⊆ 𝜑 1to refine the abstraction

• If both must and ¬𝑚𝑎𝑦 summaries are not

available, analyze procedure 𝒫𝑗

• 𝑦𝑒𝑠 𝑚𝑢𝑠𝑡 𝑠𝑢𝑚𝑚𝑎𝑟𝑦 for 𝒫𝑗

• 𝑛𝑜 ¬𝑚𝑎𝑦 𝑠𝑢𝑚𝑚𝑎𝑟𝑦 for 𝒫𝑗

0

1

2

4

6

7

3

5

𝜑 2

𝑇

𝑇

𝑇

𝑇 𝑇

2
𝑁𝑒

𝜑1 ∩ 𝜃 𝜑1 ∩ ¬𝜃

frontier

𝜑2

procedure 𝒫𝑖

Γ𝑒 = 𝑐𝑎𝑙𝑙 𝒫𝑗 Γ𝑒 = 𝑐𝑎𝑙𝑙 𝒫𝑗

𝒫𝑗

(𝜑 1 ⊇ 𝜃) ∧ (¬𝜃 ∩ Ω𝑛1 = ∅)

𝜑 2 ⊇ 𝜑2

¬𝑚𝑎𝑦 𝑠𝑢𝑚𝑚𝑎𝑟𝑦

 Engineering for making Yogi robust, scalable and industrial
strength

 Several of the implemented optimizations are folklore
 Very difficult to design tools that are bug free evaluating

optimizations is hard!

 Our empirical evaluation gives tool builders information about
what gains can be realistically expected from optimizations

 Details in ICSE ‘10

 Vanilla implementation of algorithms:
 (flpydisk, CancelSpinLock) took 2 hours

 Algorithms + engineering + optimizations:

 (flpydisk, CancelSpinLock) took less than 1 second!

 Benchmarks:

 30 WDM drivers and 83 properties (2490 runs)

 Anecdotal belief: most bugs in the tools are

usually caught with this test suite

Summaries Total time

(minutes)

#defects #timeouts

yes 2160 241 77

no 3780 236 165

42%

 Bolt: a generic

framework that uses

MapReduce style

parallelism to scale

top-down analysis

Intraprocedural parameter

Summary database

~Linear speedup!

PLDI 2012 tutorial
http://research.microsoft.com/yogi/pldi2012.aspx

http://research.microsoft.com/yogi/pldi2012.aspx

