The Yoqgi Project

Software property checking via verification and testing

What is Yogi?

An industrial strength program verifier

Philosophy: Synergize verification and testing

Synergy [FSE '06], Dash [ISSTA ‘08], Smash [POPL
‘10], Bolt [submitted] algorithms to perform
scalable analysis

Engineered a number of optimizations for
scalability

Integrated with Microsoft's Static Driver Verifier
(SDV) toolkit and used internally

Property checking

Question
. L ,
void f(int *p, int *q) Does the assertion hold for all possible inputs:
*p = 4;
*q = 5;

assert (1 Qurror)

N RO MM

Must analysis: finds bugs, but can't prove their
absence

May analysis: can prove the absence of bugs,
but can result in false errors

More generally, we are interested in the query

?
(QDpre :>f Perror)

Must information

(T —i,»f (xp # 4)) = yes

test
void f(int *p, int*q) ={=9
{
0: *p = 4;
1: *q = 5;
¥
C(p+4)

Captures facts that are guaranteed to hold on particular
executions of the program (vnder-approximation)
Error condition is reachable by any input that satisfies (p = q)

May information

?
((p # Q= (xp#4)) =no proof
void f(int *p, int*q) » #q)
{
0: *p = 4;
1: *q = 5; =9 ®#q
}
(xp #4)

« Captures facts that are true for all executions of the
program (over-approximation)

» Proof can be obtained by keeping track of the predicates
(p=q)and (xp # 4)

Dash: Proofs from Tests

Algorithm uses only test case generation
operations
Maintains two data structures:
A forest of reachable concrete states (tests)
Under-approximates executions of the program
A region graph (an abstraction)
Over-approximates all executions of the program
Our goal: bug finding and proving
If a test reaches an error, we have found bug

If we refine the abstraction so that there is *no* path
from the initial region to error region, we have a
proof

Key ideas
Frontier

W P, uses only aliases o that are present along
concrete tests that are executed

Key ideas

Step 1. Try to generate a test
that crosses the frontier

Perform symbolic
simulation on the path
until the frontier and
generate a constraint ¢4

Conjoin with the condition
@, needed to cross
frontier

Is @1/ @, satisfiable?

frontier

Key ideas

Step 1. Try to generate a test
that crosses the frontier

Perform symbolic
simulation on the path
until the frontier and
generate a constraint ¢4

Conjoin with the condition
@, needed to cross
frontier

Is @A @, satisfiable? [YES]

frontier

Step 2: run the test and @
extend the frontier

Key ideas

Step 1. Try to generate a test
that crosses the frontier

Perform symbolic
simulation on the path
until the frontier and
generate a constraint ¢4

Conjoin with the condition
@, needed to cross
frontier

Is @1/ @, satisfiable? [NO]

frontier

Step 2: use WP, to refine so |
that the frontier moves Lo
back!

The Dash algorithm

—— y=1 L SR
Program P
- Property ¥ J : :
void f(int y)
{
Construct initial abstraction 0: int lock. x:
Construct random tests ’ ’
1: do {
2: lock = 1;
4: if (%) {
5: Tock = 0;
succeeded? 6: y = y+1:

} while (x !'=vy)
if (lock = 1)

Abstraction
succeeded?
: error();
0:

T = error pathin abstraction
f = frontier of error path

= O 00N

Can exten
test beyond
ontier?

yes

T = (0,1,2,3,4,7,89) a
Refine abstraction Symbolic execution +
Theorem proving .
® frontier

: reﬁne .: “
ﬂ

p = (lock.state! = L)

> >

p= (lock.state! = L)

Another iteration

'npu!:
Program P
- Property ¥ J

void f(int y)

{
Construct initial abstraction 0: int lock. x:
Construct random tests) T
1: do {
2: lock = 1;
> 3: X =Y;
4: if (%) {
Test yes 5: Tock = 0;
succeeded? . .
6: y = y+1;
no }
Abstraction 7: } while (x !=1vy)
succeeded? 8: 1if (lock != 1)
9: error();
Al 10:
T = error path in abstraction }
f = frontier of error path |
Can extend
test beyond
yes ontier?
Refine abstraction t=(0,1,2,3,47,<8,p>9)

&

frontier

Correct, the program is ...

OUVTEANWNREROM

= O 00N

void f(int y)

int lock, X;
do {
lock = 1;
X =Y;
if () o
lock = 0;
y = y+l;
}
} while (x !'=vy)
if (Tock != 1)
error();

Interprocedural analysis

frontier

Key idea

Perform a recursive Dash query
on the called procedure and use
the result to either generate a

test or compute WP,

4

Interprocedural analysis

?
DaSh<<p1:>fOO <,02)
- pass: perform refinement

- fail: generate test

Procedure summaries

must summary
* A must summary for a procedure P; is of

must P1
the form (¢4, ¢,) € =, P.
* Vt € @,.3s € @, .t can be obtained by

executing P; from an initial state s

%)

. may summar
* A —=may summary for a procedure P; is of e Y

—-may
the form (@4, 9;) € =,

* Vs € @, YVt € @, .t cannot be obtained by
executing P; starting in state s

P1

34

(%)

Compositional may-must analysis

P1 EHn1 @2 Ennz Qoln'in + 0 @Znﬂnz =0
e = (ny,ny) € Ep, is a call to procedure P

must

(@1, P2) € =p; U, 291 0@, N0 +0

[MUST — POST — USESUM]

Qp, =0y, U0 .
must summary procedure B,
P1 S O, frontier
P, <
(@220) A (92N 0 # D) : T, = call P;

* Check if frontier (n,,n,) can be extended by a
must summary (1, $) T
* Ifyes, grow Q, with 6 € @,

Compositional may-must analysis

P1 EHn1 @2 Ennz Qoln'in + 0 @Znﬂnz =0
e = (ny,ny) € Ep, is a call to procedure P

must

(@1, P2) € =p; U, 291 0@, N0 +0

[MUST — POST — USESUM]

Qp, =0y, U0 .
must summary procedure B,
P1 S O, frontier
P, ¥
(@220) A (@, N6 + 0) . = call/P;

* Check if frontier (n,,n,) can be extended by a
must summary (1, $) T
* Ifyes, grow Q, with 6 € @,

Compositional may-must analysis

e = (nq,ny) € Ep, is a call to procedure P;
-may

(91,920 € =9, 92S ¢, 0SSP 20NQ0y, =0
My, = (Mo, \ {91}) U{e1 N 6,0, N 20} N =N, U {(@106,9,)]}

[NMAY — PRE — USESUM]

—may summary

Q(@l 2 0) A (=6 N0y, = 0)

%

O@z =2 @,

« Check if frontier (n4,n,) can be refined by a
—may summary (P, P,)

* Ifyes, use 8 € {to refine the abstraction

» |f both mustand —may summaries are not
available, analyze procedure 7;

* yes = must summary for P;
* no = —may summary for P;

procedure P;

Optimizations

Engineering for making Yogi robust, scalable and industrial
strength

Several of the implemented optimizations are folklore

Very difficult to design tools that are bug free = evaluating
optimizations is hard!

Our empirical evaluation gives tool builders information about
what gains can be realistically expected from optimizations
Details in ICSE ‘10

Vanilla implementation of algorithms:
(f1pydisk, cancelspinLock) took 2 hours

Algorithms + engineering + optimizations:
(f1pydisk, cancelspinLock) took less than 1 second!

Evaluation setup

Benchmarks:
30 WDM drivers and 83 properties (2490 runs)

Anecdotal belief: most bugs in the tools are
usually caught with this test suite

Empirical results (Summaries)

42%

yes 2160 241 77
no 3780 236 165
1200) /
1000 -PSOBIOCCIOIMEEDONL SOKMOCEK M HKX X
time_(se?conds) 400 ‘ % e M X P
Yogi without X X N//
modification | % ool
analysis and | %3 . /
without .
summaries >

400 600 800 1000 1200

time (seconds)
Yogi with modification analysis and with summaries

Current research

Intraprocedural parameter

Bolt: a generic
framework that uses Program P —» T e "

BoLr

Query Qpmain “

\/I a p Re d u Ce Styl e (safety property .'-'_h 7 St of queries Q7
narallelism to scale Joo
top-down analysis o

Summary database

int foo(int p_
int bar(int p_
int baz(int p baz);

main(int i, int 3}

int =, v;
if (3 = 0)
x = foo(il);
else if (§ = -10)
x = bar(i);
else
x = baz(j);

v = x + 5

~r
Ay

assert(y > 0);

(a)

Puncu(Q;) (~ "\I

Puncu{();)

YONTT T
| Ready | | Blocked |
N N

PuncH(();)
(Add summary to
SuMmDB)

|"'.I.I)l(']

o
main

\Blocked)

I-'jfgu:air‘t\ 1
\\BJ-E: C Iﬁ.c—c/l,.

o

!
|

\Ready/

O
:' Iﬁm?:lin]l
'\f%_"/
PUNCH
g {/ . /.'_"'::,\
Qfac- i { Jbar\

'/EQ f 03‘- ‘/E:J ha:r\".
Ready),-I | Ready |

L S
Y

PuNCH PUNCH

'r/(;.]fa:\ //)har

'-\ Done |} Done

S

\ /
v

-
Y

PuNCH

"'\ 0N,
l|-{‘.:\]1":20 \

‘/[)b I
Head\:/

'Blccke

'\E'-

;\li\.l:'

) Map

Empirical results

slatstc
or ' Total time taken (sequential) | 26 hours
Linear speedup! Total time taken (paralkel) 7 hours
Average observed speedup 3.71x
Maximum observed speedup | 7.41x
B.OD
[L |
oo
—#= toastmion
.00 PendedCompletedRequest
=%
.i 200 -l toastmon PrpirpCompletion
4.00 parport MarkPowerDown
j 00 =#=parport PowerDownFail
oo
parport
100 RemovelockMnSurprise Remoye
0.00 parport PowerUpFail

z 4 - b L] 3z B3 128

Number of allowed parallel threads

Questions?

"o B S
S S ~: i

PLDI 2012 tutorial

http://research.microsoft.com/yoqi/pldi2012.aspx

http://research.microsoft.com/yogi/pldi2012.aspx

