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The problem

An attacker has some a priori knowledge of

the secret which is improved by observing

the system

measure this improvement: how much did

the attacker gain from the observations?
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Example: an attacker steal your cash card;

he has no idea about your pin (apriori prob-

ability to guess it 0.0001)

to randomly try a pin number at a cash ma-

chine will generate two possible observations:

1. the pin is accepted (with probability 0.0001),

2. the pin is rejected (with probability 0.9999)



Quantitative analysis of confidentiality ac-
cording to a measure F :
difference of the measure F on the secret h
before and after observing the system P

∆F (P, h) = F (h)− F (h|P )

1. F (h) = measure of the secret h before
observations

2. F (h|P ) measure of the secret h given ob-
servations P
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some possible choices for F, F (−|−) are:

(A) Information about the secret: F and
F (−|−) are Shannon entropy and conditional
entropy

F (h) = H(h)=entropy of secret h before ob-
servations= a priory information about h

F (h|P ) = H(h|P )=entropy of secret h given
observations= information about h given ob-
servations

∆H (Cash machine,h)=0.00147 (bits of in-
formation)
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(B) : Probability of guessing in one try: (in-

troduced by Smith and noted ME)

F (h) = − log(maxx∈h µ(h = x)) = a priory

probability of guessing h

F (h|P ) = − log(
∑
y∈P µ(y)(maxx∈h µ(h = x|P =

y))) = probability of guessing h given obser-

vations

∆ME (Cash machine,h)=1 (= log(2): chances

have doubled)
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(C) Expected number of guesses: (GE)

F (h) =
∑
xi∈h,i≥1 i µ(h = xi) = a priory aver-

age number of guesses for h

F (h|P ) =
∑
y∈P µ(y)(

∑
xi∈h,i≥1 iµ(h = xi|P =

y)) = av. n. of guesses for h given observa-

tions

(assume i < j implies µ(h = xi) ≥ µ(h = xj))

∆GE (Cash machine,h)= 0.9999

6



From now on assume:

System=deterministic program (e.g. C code),

Observations=outputs, return values ... time

Two questions:

1. how these measures F classify threats?

2. what do they have in common?
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How do they classify threats?

Define a ”more F secure” ordering between

programs P, P ′ by

”the measure F on P is always less than the

measure F on P ′ ”:

P ≤F P ′ ⇐⇒ ∀µ(h). ∆F (P ;h) ≤∆F (P ′;h)

Does this ”source code secure” ordering de-

pend on the choice of F?
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remember F can be

1. entropy,

2. probability of guessing,

3. average number of guesses

In general there is no relation between en-
tropy, probability of guessing or average num-
ber of guesses (Massey)



but...

All measures give the same ordering:

Teo: ≤H = ≤ME = ≤GE

This answer ”what do they have in com-

mon?”

They agree on the classification of source

code threats

9



So what is this common order to all measures

F?

It is the order in the Lattice of Information

(LOI)

LOI= lattice of all partitions (eq. rel.) on

a set of atoms. Is a complete lattice with

ordering:

X ≤L Y ⇐⇒ y 'Y y′ ⇒ y 'X y′
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assume a distribution on the atoms then we

can see LOI as a lattice of random vari-

ables....

µ(X = x) =
∑
{µ(xi)|xi ∈ x}

strictly speaking is the set theoretical kernel

of a r.v. (but as we don’t need the values of

the r.v. that will be fine)
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associate to a program P the partition L(P )

whose blocks are h undistinguishable by the

observations:

formally L(P ) = ([|P |])−1

Teo: ≤H = ≤ME = ≤GE = ≤L
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What do they have in common?...

the channel capacity coincide

i.e. the maximum measure according to en-

tropy and probability of guessing coincide:

max
h

∆ME(P, h) = max
h

∆H(P, h) = log2(|L(P )|)

|L(P )| (number of blocks)
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Applying these concepts to real code:

”is the channel capacity of this C function

> k”?

See a C program as a family of equivalence

relations (one for each choice of low inputs)

verify whether exists an equivalence relation

in this family with ≥ 2k classes (active at-

tacker model e.g. underflow leak CVE-2007-

2875)
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Linux Kernel analysis verification
practicalities:
h = kernel memory. size ' 4 Gigabits
low = C structures. size ' arbitrary

e.g. for a small 5 integer structure and bound
k = 16 the question is: exists a relation
among 2160 equivalence relations over a space
of 264 atoms with more than 216 equivalence
classes?

not easy..

CBMC can help: symbolic+unwinding asser-
tions
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(Heusser-Malacaria 2010) use assume-guarantee

reasoning and use CBMC for these questions

on bounds

The approach is powerful, e.g. quantifying

architecture leaks : CVE-2009-2847 doesn’t

leak on a 32 bits architecture but leaks on a

64 bits machine.

It is also the first verification of linux kernel

vulnerability patches
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Current directions

Bit pattern analysis. Meng and Smith 2011

Bit pattern analysis of Linux kernel. Sang

and Malacaria 2012

Also work on side channels Kopf et Alt. (Tim-

ing + ongoing on Cache leaks)

“Black box” approaches(Chotia work, Side-

buster)
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Conclusions:

Scientific: different measures of confiden-

tiality are not so different

Engineering: impossible verification tasks are

sometimes possible

Testing: David?
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Description CVE 20- LOC k? Patch bound Time

AppleTalk 09-3002 237 64 Y >6 bit 83s
IRDA 09-3002 167 64 Y >6 bit 30s
tcf fill node 09-3612 146 64 Y >6 bit 3m
sigaltstack 09-2847 199 128 Y >7 bit 49m
cpuset† 07-2875 63 64 × >6 bit 1m
eql 10-3297 179 64 Y >6 bit 16s

SRP getpass – 93 8 Y ≤1 bit 0.1s
login unix – 128 8 – ≤2 bit 8s

table 1: Experimental Results. ? Number of

unwindings †
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