Squeeziness

A metric for avoiding fault masking in software testing

• Joint work with

Rob Hierons

Haito Dan

Matt Moroz

• with help from Sebastian Hunt and Laurie Tratt

software fault masking

- also called error masking
- reduces test set effectiveness
- Error masking condition:

 $\exists x, s, s', y . PRE(x) \land A_{S_C}(x, s) \land PRE_C(s) \\ \land \neg POST_C(s, s') \land wp(G(E_C, E), POST)(x, s') \\ \land POST(x, y) \end{cases}$

Laski et al. '95

example

Intended	tended Unintended	
x=x+2;	x=3*x;	
"oracle" if(x>0)	if(x>0)	
x=x%4;	x=x%4;	
else x=x;	else x=x;	

output	input	output
t1:x==1	t1:x==3	t1:x==1
t2:x==-3	t2:x==-5	t2:x==-15

collisions and state abstraction

- (x>0) == true; x% 4: collisions
- also: oracle may examine only part of the state
- execution path plus oracle identify good and bad states

Domain to Range Ratio

- collisions necessary, not sufficient, for fault masking
- [Woodward and al-Khanjari (2000)] observed fault masking associated with domain to range ratio
- "loss of information measure" |D|/|R|

information theoretic view

Treat the input space and the output space for a program as random variables: I and O

Oracle's Observation of Output

Information in a random variable

$$\mathcal{H}(X) = -\sum_{x \in X} p(x) \log_2 p(x)$$

Loss of information from running program P

 $\mathcal{H}(I) - \mathcal{H}(O)$

"Simple!"

where $\llbracket P \rrbracket I = O$

We call this quantity Squeeziness.

 $Sq(f) = \mathcal{H}(I) - \mathcal{H}(O) = \sum_{o \in O} p(o) \mathcal{H}(f^{-1}o)$

via the partition property

it's not DRR

- Squeeziness is not a refinement of DRR (and vice versa).
- DRR is a cruder measure than Squeeziness and makes fewer distinctions.
- orderings they produce on (f, I) pairs are inconsistent.

the likelihood of collisions

assume uniform distribution on I

|I|

$$|f^{-1}o_i|$$

$$PColl(f) = \sum_{i=1}^{n} \frac{m_i * (m_i - 1)}{d * (d - 1)}$$

Relationship between Squeeziness and PColl not monotonic

Pearson coefficient

Domain size	Max sub	Corr with Sq	Corr with DRR
1.00E+05	200	0.981	0.849
1.00E+05	200	0.986	0.889
1.00E+05	2000	0.981	0.849
1.00E+05	2000	0.986	0.889
1.00E+06	200	0.971	0.748
1.00E+06	200	0.964	0.686
1.00E+07	200	0.968	0.645
1.00E+07	200	0.975	0.606
1.00E+08	200	0.978	0.584
1.00E+08	200	0.975	0.668

what can we do with Squeeziness?

• (1) Measure how much Software Under Test is inclined to fault masking (not so helpful . . .)

• (2) Improve test set selection?

test suite selection

- current "standard" for white box testing is structural coverage: statements, branches, etc.
- limited relationship between coverage and test suite effectiveness, e.g. [Cai and Lyu. A-MOST 2005] plus other papers

Use covering paths to generate tests

Pick a less Squeezy path

Reduce possible fault masking

probability distributions

How can developers know the random variable in inputs?

(1) Maximum Entropy Principle (= Uniform distribution) $Sq(f) = \frac{1}{|I|} \sum_{o \in O} |f^{-1}o| \log_2(|f^{-1}o|)$

(2) Maximum Squeeziness: $Sq(f) = log_2|f^{-1}o'|$

(3) WesWeimar: estimating path execution frequency statically

current research

- experimental validation of post structural element path selection using a mutation testing approach
- theory of probabilistic testing
- program analyses to estimate Squeeziness
- relationship to mutation testing, SBT
- **position paper:** Clark and Hierons. Squeeziness: An Information Theoretic Measure for Avoiding Fault Masking. Accepted for publication in Information Processing Letters

Questions?