
Symbolic Crosschecking of Data-Parallel Code

Cristian Cadar
Department of Computing
Imperial College London

31st January 2012
17th CREST Workshop, London, UK

Joint work with Peter Collingbourne and Paul Kelly
[EuroSys 2011, HVC 2011]

Dawson Engler, Daniel Dunbar, Peter Pawlowski, Vijay Ganesh,

David Dill, Junfeng Yang, Peter Boonstoppel, Can Sar, Paul Twohey,
JaeSeung Song, Peter Pietzuch, Paul Marinescu

• Renewed interest in the last few years:
– Software testing: high-coverage test generation
– Automatic bug-finding
– Security: automatic vulnerability signature

generation, security testing
• Main enablers:

– Recent advances in constraint solving
– Mixed concrete and symbolic execution

Dynamic Symbolic Execution

Dynamic SymEx in Practice

• Many dynamic symbolic execution/concolic
tools available as open-source:
– CREST, KLEE, SYMBOLIC JPF, etc.

• Started to be adopted by the industry:

– Microsoft (SAGE, PEX), IBM (APOLLO),
Fujitsu (KLEE/KLOVER, SYMBOLIC JPF),
NASA (SYMBOLIC JPF), etc.

Dynamic Symbolic Execution

• Dynamic symbolic execution can automatically
explore multiple paths through a program
• Determine the feasibility of a particular path by reasoning

about all possible values using a constraint solver

• Before each dangerous operation, can check if there are
any values that can cause an error

• For each path, can usually generate a concrete input
triggering the path

4

Let the code generate its own (complex) test cases!

Scalability Challenges

Constraint solving
challenges

Path exploration
challenges

• Employing search heuristics
• Dynamically eliminating

redundant paths
• Statically merging paths
• Using existing regression test

suites to prioritize execution
• etc.

 Exploit the characteristics of
constraints generated by symex
• Eliminating irrelevant

constraints
• Exploiting similarity

between constraints
• etc.

 [Joint work with Engler, Dunbar, Collingbourne, Kelly, Pawlowski, Sar,
Twohey, Yang, Boonstoppel, Ganesh, Dill, Song, Pietzuch, Marinescu]

Three tools: EGT, EXE, KLEE

EGT/EXE/
K L E E

Constraint Solver (STP)

x = 3

x = -2

x = 1234

x = 3

 C code

x  0
x  1234

[Joint work with Dawson Engler, Daniel Dunbar, Peter
Pawlowski, Peter Boonstoppel, Vijay Ganesh, David Dill]

EGT, EXE, KLEE

Successfully used our tools to:
• Automatically generate high-coverage test suites

• Find bugs and security vulnerabilities in complex

software

Bug Finding with EGT, EXE, KLEE:
Focus on Systems and Security Critical Code

Applications

UNIX utilities
ext2, ext3, JFS UNIX file systems

Coreutils, Busybox, Minix (over 450 apps)

Network servers

pci, lance, sb16

Library code libdwarf, libelf, PCRE, uClibc, Pintos

Packet filters FreeBSD BPF, Linux BPF

MINIX device drivers

Bonjour, Avahi, udhcpd, WsMp3

Kernel code HiStar kernel

• Most bugs fixed promptly

OpenCV (filter, remap, resize, etc.) Computer vision code

8

OpenCL code Parboil, Bullet, OP2

JFS, Linux 2.6.10: Disk of death

Offset Hex Values
00000 0000 0000 0000 0000 0000 0000 0000 0000

.
08000 464A 3135 0000 0000 0000 0000 0000 0000
08010 1000 0000 0000 0000 0000 0000 0000 0000
08020 0000 0000 0100 0000 0000 0000 0000 0000
08030 E004 000F 0000 0000 0002 0000 0000 0000
08040 0000 0000 0000 . . .

• 64th sector of a 64K disk image
• Mount it and PANIC your kernel

[Joint work with Junfeng Yang, Dawson Engler, Can Sar, Paul Twohey]

Bonjour: Packet of Death

Offset Hex Values
0000 0000 0000 0000 0000 0000 0000 0000 0000
0010
0020 00FB 0000 14E9 002A 0000 0000 0000 0001
0030 0000 0000 0000 055F 6461 6170 045F 7463
0040 7005 6C6F 6361 6C00 000C 0001

003E 0000 4000 FF11 1BB2 7F00 0001 E000

• Causes Bonjour to abort, potential DoS attack
• Apple confirmed it and released a security update

[Joint work with JaeSeung Song and Peter Pietzuch]

Kerberized Telnet: Packet of Death

Offset Hex Values
0000 001E 8C97 BBD9 001B FC40 5983 0800 4500
0010
0020 7DE1 AAA9 0017 7FBE B5A2 494D 6AF4 8018
0030 005C 4FAE 0000 0101 080A 014E 3CCD 1115
0040 029A FFFD 25FF FA25 03FF F0FF

0040 8930 4000 4006 7E39 9BC6 7DE0 9BC6

F800

• Crashes the telnet daemon
• Reported and confirmed by developers

[Joint work with JaeSeung Song and Peter Pietzuch]

Semantic Bugs

• Bugs shown before were all generic errors
• What about semantic bugs?

12

Option 1: Write specifications!
• Can find assert() violations
 (Can verify assert() statements on a per-path basis)

Crosschecking (Equivalence Checking)

Option 2: Crosschecking!
• Successfully used in the past
• Great match for symbolic execution

Lots of available opportunities:
• Different implementations of the same functionality:

e.g., libraries, servers, compiler

• Optimized versions of a reference implementation
• Refactored code
• Reverse computations: e.g., compress and uncompress

13

New Platforms, New Code

• Recent years have seen the emergence of
new computing platforms which provide
many opportunities for optimizations

• Code is often adapted manually to benefit
from these platforms

14

Error-prone, as any manual process

SIMD Optimizations

Most processors offer support
for SIMD instructions
• Can operate on multiple data

concurrently
• Many algorithms can make

use of them (e.g., computer
vision algorithms)

15

General Purpose GPU Computing

(2
00

6)

(2
00

8)

General Purpose GPU Computing

17

New programming model:
• Large number of threads
• Hierarchical execution

and memory model

 MEM MEM MEM

CPU

MEM

PC
Ie

Crosschecking (Equivalence Checking)

We can find any mismatches in their behavior by:
1. Using symbolic execution to explore multiple paths

2. Comparing the path constraints across implementations

18

Reference implementation
(written in C)

Optimized implementation
(SIMD / OpenCL)

Symbolic
execution

engine
Mismatches

Crosschecking: Advantages

• No need to write any specifications

• Constraint solving queries can be solved faster
• Can support constraint types not (efficiently)

handled by the underlying solver, e.g., floating-point

 Many crosschecking queries can be

syntactically proved to be equivalent

19

1

<<

2
*

Crosschecking: Advantages

Many crosschecking queries can be
syntactically proved to be equivalent

20

OpenCL Optimizations

• Parboil:
– GPU benchmark suite, originally

written in CUDA
• OP2

– Library for applications on
unstructured grids

• Bullet open-source physics library
– Popular library used movie studios

and professional game developers
– Analyzed soft body engine

21

Bullet library

OpenCL Benchmarks:
Bugs and Mismatches

Several bugs and mismatches:
• 2 mismatches between C and OpenCL code

• Incorrect FP associativity and distributivity assumptions (CP in Parboil)

• 3 memory errors
• Buffer overflows (MRI-Q&MRI-FHD in Parboil)
• Use-after-free: incorrect synchronization between host and kernel code

(MRI-Q in Parboil)
• Uninitialized memory (MRI-FHD in Parboil)

• 1 race condition
• Missing synchronization barrier (OP2)

• 1 compiler bug
• NVidia compiler bug (incorrect optimization)

22

SIMD Optimizations

OpenCV: popular
computer vision
library from Intel and
Willow Garage

[Corner detection algorithm]

23

OpenCV Results

• Crosschecked 51 SIMD-optimized versions
against their reference scalar implementations
• Proved the bounded equivalence of 41
• Found mismatches in 10

• Most mismatches due to tricky FP-related issues:
• Precision
• Rounding
• Associativity
• Distributivity
• NaN values

24

OpenCV Results

Surprising find: min/max not commutative nor associative!

min(a,b) = a < b ? a : b

a < b (ordered)  always returns false if one
 of the operands is NaN

min(NaN, 5) = 5
min(5, NaN) = NaN

min(min(5, NaN), 100) = min(NaN, 100) = 100
min(5, min(NaN, 100)) = min(5, 100) = 5

25

Integrating Crosschecking into
Development Process

Semantic mismatches not always errors
– Underspecified behavior

Two (anecdotal) insights:
1. Provide developers the ability to add “assumptions” eg:

– Floating-point associativity holds:
• A+(B+C) = (A+B)+C

– Disregard the difference between 0- and 0+:
• A+0 = A

2. All things being equal, developers prefer to keep the
behavior of the reference implementation
– Particularly if we can provide some guarantees

• bounded equivalence

26

KLEE: Freely Available as Open-Source

http://klee.llvm.org

• Over 200 subscribers to the klee-dev mailing list
• Extended in many interesting ways by several

research groups, in the areas of:
• wireless sensor networks
• schedule memoization in multithreaded code
• automated debugging
• exploit generation
• online gaming, etc.

27

