

Automated System Testing of Real-
Time Embedded Systems Based on

Environment Models
Lionel Briand

Software V&V Laboratory

Acknowledgements
•  Work done at Simula Research

Laboratory
•  Thesis work of Zohaib Iqbal
•  Shaukat Ali
•  Andrea Arcuri

New affiliation
•  Interdisciplinary centre for

ICT security, reliability, and
trust

•  National priority
•  Young university (2003) and

new interdisciplinary center
(2009), now the size of Simula

•  International university and
centre at all levels: students,
research scientists, faculty,
management

•  Three official languages:
English, French, German

Facts about ES
•  By 2020: 40 billion embedded devices
•  Annual budget for embedded systems:

160 billion Euros with annual growth of
9%
– Average size: 1 million LOC
– A premium class automobile: 100 million

LOC
– Boeing 787 Dreamliner: 6.5 million LOC to

operate on-board support systems and
avionics

Testing Considerations
•  Independent system testing
– Limited knowledge of system design
– Thorough knowledge of application

domain
•  Environment simulation
– Testing on development platform
– Testing early

Types of Simulation
•  1) Model and simulate the SUT, its

hardware and its environment
•  2) SUT is tested on development

platform with simulated environment
and adapter/simulator for hardware
platform

•  3) SUT deployed on actual hardware
and tested with simulated environment

•  Model-in-the-loop, hardware-in-the-
loop, processor-in-the-loop, and
software-in-the-loop

Testing Strategies
•  Coverage of nominal behavior
•  Robustness testing, e.g., hardware

failures
•  Stress testing: Target unsafe or

critical states

Partners and Case Studies

•  Recycling machines, marine seismic acquisition system
•  Soft real time requirements in the order of seconds
•  Complex environment, many communicating

components

Our Approach
•  Black-box (BB) testing
•  Model-based testing
•  Same model for

generation of
environment simulator
and test cases

Simulator	
 Test	
 cases	

Environment	

Decomposing the Problem
•  Modeling notation and methodology
•  Code generation for simulator
•  Test strategy
•  Test harness generation

Modeling Notation and
Methodology

•  Environment modeling, not system
modeling, focused on BB test
automation

•  Use of standard notations, preferably
software standards

•  Tailor system modeling methodologies
to environmental modeling needs

•  Adopted Notation: UML + MARTE, and
a profile

Domain Model
•  Class diagram, Specific guidelines for environment modeling
•  Hardware: Sensors, Actuators, …; Other (sub)systems; Users; Abstract

concepts: temperature …
•  Associations: Communicating components, physical connections, …
•  Properties: affect the SUT, controlled by simulation, constrain behavior,

used in state invariants

Behavioral Modeling
•  For all env. components,

including users
•  Communicating UML state

machines, OCL
•  Profile: Error and Failure

state stereotypes
•  Error: Oracle
•  Level of abstraction: Only

include refinements that
impact the SUT

•  MARTE: Non-determinism
(probabilities, timed
events) Sorting Arm

Simulator Code Generation
•  Developed a simulation framework
•  Resolved UML variation points, e.g., object concurrency model, time

semantics, execution semantics, and order of events
•  Extended version of the state design pattern to address the

requirements for simulation and testing: Concurrency, time events,
change events, effects.

•  Java as action and target language, since time requirements in
seconds. Other target languages and technologies can be used.

Test Harness
•  Test goal: Reach Error states
•  Environment models and simulator used to

generate test cases and oracles
•  Test case is a setting of the environment

simulator
–  Relations among instances of environment components

(Environment configuration)
–  Input values for non-deterministic transitions

(Simulation configuration)

Test Strategies
•  System testing: Thousands of LOCS

executed, seconds/minutes, multi-
threading

•  Random testing: Baseline
•  Adaptive Random Testing
– Distance function, Generate diverse

test suite
•  Search-based testing to converge

towards Error states

Search-based Testing
•  Search problem: Find simulation configurations

reaching Error states in environment models
•  Search techniques: GA, (1+1) EA
•  Approach level (A), branch-distance (B) in state

machines
•  Approach level (to get close to error state)
•  Branch distance (to solve OCL constraints on guards)

•  Extension to handle time-based transition
triggers (T)

•  Original formula for fitness f:
•  f(m) = mine ((Ae(m) + nor(Te(m)) + nor(Be(m)))

Case Studies (I)
•  Research questions:

–  RQ1: What is the effect of test case representation on fault detection
effectiveness of the testing strategies?

–  RQ2: Which testing strategy is best in terms of failure detection amongst RT,
ART, GA, and (1+1)EA?

–  RQ3: Is environment model-based system testing an effective approach in
detecting faults for industrial RTES?

•  Evaluation criteria: success rate (Fisher exact test, odds ratio), # test cases
executed when no difference (Mann-Whitney U-test, Vargha-Delaney A statistic)

•  Industrial RTES + artificial case studies derived from actual systems to obtain
various properties

•  At most two error states, hand seeded non-trivial fault (multithreaded, network
features)

•  Artificial RTES: 96 experiments, sampled at most 1000 test cases for each algo, 10
seconds per test case, run each algo 100 times, 653 days of execution on a single
computer -> cluster

•  Industrial RTES: run simulator for 60 seconds, 1000 fitness evaluations can take 16
hours, single dedicated computer, 55 days

Results
•  ART best, but search techniques worse than RT!
•  Industrial case study: ART yielded a success rate of 100%
•  But on some artificial problems, no approach was

successful (seeded fault hard to detect)
•  Plausible explanation for low performance of search:

–  Most difficult: The transition to the error state, whose
trigger and guard usually depend on the entire state of the
environment and SUT

–  Little diversity was generated during search
–  Favored time distance over branch distance
–  Branch distance only computed if time distance was zero
–  Made it very difficult to solve branch distance

•  Found two critical faults in the (already tested) production
code of the industrial case study

Case Study (II)
•  Improved the fitness function for search techniques
•  Compute branch distance even when time distance not zero
•  Favor cases where branch distance is shorter over cases where

time distance is shorter (used order function ITD, not fitness)
•  Exploit more properties of the environment models: time (TIR)

and transitions to “risky” states, model coverage
•  Overall, (1+1) EA with TIR and ITD proved to be the best

algorithm
•  But search-based algorithms perform significantly worse than RT

for the artificial problems where the approach to risky states
was trivial.

•  Recommendation: Start by applying RT and evaluating whether
the risky states are easy to reach. If this is the case, then RT is
most likely trigger the transition to the error state. In case the
approach is not trivial, then one should use (1+1)EA-ITD-TIR

Conclusions

•  (1+1)EA once again better than GA
•  Using more information from models and

simulation (risky states) helped improve
search

•  But the same technique is not the best on
all case studies

•  Finding the right fitness function was, as
usual, a very exploratory process

•  Running such experiments on RTES
presents practical challenges (scale, time)

Final Thoughts
•  An example research project driven by precise,

concrete industrial considerations
•  Practical aspects weigh heavily on how one defines

the problem and on the applicability of the solution
•  Applicability is not an afterthought after the

research is completed, not in engineering disciplines
•  A complete solution is necessarily multidisciplinary:

Modeling, search, testing
•  Though a common industrial problem, limited material

could be reused from research
•  SE researchers often address problems that are, as

defined, unlikely to be encountered in practice. Vast
areas of practical importance are not addressed.

References
•  Z. Iqbal et. al, Automated System Testing of Real-Time Embedded

Systems Based on Environment Models, Simula Research Laboratory,
Technical Report (2011-19) - submitted

•  Z. Iqbal et. al, Code Generation from UML/MARTE/OCL Environment
Models to Support Automated System Testing of Real-Time Embedded
Software, Simula Research Laboratory, Technical Report (2011-04) -
submitted

•  S. Ali et. al, Solving OCL Constraints for Test Data Generation in
Industrial Systems with Search Techniques, Simula Research Laboratory,
Technical Report(2010-16) – submitted. Short version in QSIC 2011.

•  A. Arcuri et. al, "Black-box System Testing of Real-Time Embedded
Systems Using Random and Search-based Testing", In: IFIP
International Conference on Testing Software and Systems (ICTSS),
2010.

•  Z. Iqbal et. al, "Environment Modeling with UML/MARTE to Support
Black-Box System Testing for Real-Time Embedded Systems:
Methodology and Industrial Case Studies", In: ACM/IEEE International
Conference on Model Driven Engineering Languages and Systems
(MODELS), 2010.

