
An Overview of Techniques for
Detecting Software Variability

Concepts in Source Code

Angela Lozano
Université catholique de Louvain, Belgium

1/30

Monday 5 December 2011

 Variability

• Customized and Affordable

• Maximize reuse of common features

• e.g. reuse hw. customize with sw.

• e.g. sw families = { similar apps with shared
provenance }

• e.g. context-aware, fault tolerant and intelligent
apps

2/30

Monday 5 December 2011

Why mining for variability?

• To recuperate from architectural degradation♻
• To expand a successful single product to new

markets ↔↕

• Cost-benefit assessment of variation ⚖
• Effect of a variation in the development of the

product

3/30

-over-generalization vs. over-trivialization (cost of a making a F variable)
-Evaluate != variability mechanisms (flexibility vs. performance

- Scattering & tangling of vpʼs & Fs
- pull-up Fs to the core or push down Fs because they are variable

- Trace variability REQ -> IMPL
- Explicit dependencies
- Appropriateness of binding times & variability mechanisms (flexibility vs.

possible variable features

Monday 5 December 2011

Variability
Feature

Feature Diagram

Mandatory vs. Optional features

Feature dependencies

Variants

Variation points

Binding

Domain instances

Optional vs. Alternative variants

Single vs. Multiple features
4/30

Variable features

Monday 5 December 2011

Variability

Feature

Feature Diagram

Mandatory vs. Optional features

Feature dependencies

Variants

Variation points
Binding

Domain instances

Optional vs. Alternative variants

Single vs. Multiple features

4/30

Variable features

Monday 5 December 2011

5/30

some products of the same domain

Feature: unit/increment of functionality

Car

Transmission Engine

Manual

Suspension

Gasoline

Car

Horsepower

Transmission Engine Extras

Manual Gasoline Air
Conditioning Cruise

Suspension

Car

Horsepower

Transmission Engine Extras

Automatic GasolineElectric Air
Conditioning Cruise

Suspension

basic car

motor-head car

executive car

eco-aware car

Car

Transmission Engine Extras

Automatic Electric Cruise

Suspension

Monday 5 December 2011

Car

Transmission Engine

Manual

Suspension

Gasoline

Car

Transmission Engine Extras

Automatic Electric Cruise

Suspension
Car

Horsepower

Transmission Engine Extras

Manual Gasoline Air
Conditioning Cruise

Suspension

Car

Horsepower

Transmission Engine Extras

Automatic GasolineElectric Air
Conditioning Cruise

Suspension

Mining products of
the same domain

[Snelting TOSEM 96]

UNIX DOS X_win BSD !BSD
I X
II X X
III X X
IV X X
V X

X: No relation with features
X: Need a specific syntax for the configuration of the products
X: A trigger does not necessarily store the selection of a variant

#ifdef	 UNIX
...I ...
#endif
#if defined(X_win)
 && !defined(BSD)
...II...
#endif
#ifdef DOS
	 #ifdef X_win
	 ...III...
	 #endif
	 #ifdef BSD
	 ...IV...
	 #endif
...V...
#endif

⚖

6/30

Code that
varies

Variables
that trigger
changes

Which parts of
code are chosen
by which triggers:
selection of
variants

Which trigers
are subsumed by
other triggers:
dependencies

Monday 5 December 2011

Car

Transmission Engine

Manual

Suspension

Gasoline

Car

Transmission Engine Extras

Automatic Electric Cruise

Suspension
Car

Horsepower

Transmission Engine Extras

Manual Gasoline Air
Conditioning Cruise

Suspension

Car

Horsepower

Transmission Engine Extras

Automatic GasolineElectric Air
Conditioning Cruise

Suspension

Mining products of
the same domain

X: Business-specific concepts are likely to be missing in the database.

7/30

Name of a
Class

Database
of classes
& their
methods
(OSS)

Missing methods
in the class:
common
functionality

[Hummel RSSE 10] ↔↕

signatures amongst the first 100 results, as delivered by the
search engine for various example queries. A reasonable
threshold for accepting a signature as common enough for
the design prompter seemed to require it to appear at least
20 times amongst the 100 considered results. In cases where
there were fewer than six signatures above this value we
added the following results in gray color to the table.

Table 1: Exemplary interface recommendations.
Search Term(s) Averaged Interface #

Matrix add Matrix
≈ 90 msec transpose():Matrix; 45
8, 844 results add(Matrix):Matrix; 39
732 methods toString():String; 39

multiply(Matrix):Matrix; 35
add(Matrix):void; 27
swapRows():Matrix; 24

BinaryTree BinaryTree
≈ 50 msec isEmpty():boolean; 35
1, 273 results main(String[]):void; 27
387 methods toString():String; 24

size():int; 21
height():int; 14
makeEmpty():void; 12

Stack Stack
≈ 40 msec push(Object):void; 48
68, 718 results pop():Object; 47
113 methods isEmpty():boolean; 34

toString():String; 22
pop():int; 20
push(int):void; 20

Deck Deck
≈ 50 msec shuffle():void; 55
3, 238 results dealCard():Card; 23
323 methods toString():String; 19

getCard():Card; 17
cardsLeft():int; 16
main(String[]):void; 10

CreditCard CreditCard
≈ 40 msec getNumber():String; 30
1, 148 results getCardNumber():String; 22
229 methods toString():String; 20

setCardNumber(String):void; 13
getCardType():String; 13
setNumber(String):void; 12

In addition to that, the table shows in the right row how
often each signature appeared, while the left row includes
the information how much time the calculation of the inter-
face intersections required and how many unique signatures
respectively how many results were found for each query.
Our test system contained a dual core processor with 2.8
GHz and 6 GB RAM on which this algorithm works reason-
ably fast. In other words, its response time of far less than
a second is clearly sufficient to create recommendations for
a proactive design prompter on the fly.

4.2 Discussion
In our opinion, the results presented before are already

quite promising, since they deliver pretty good recommen-
dations for our example queries with both approaches dis-
cussed in section 2; despite the fact they are based on a
relatively naive algorithm. Thus, there is clearly still a lot
of potential for further improvement. For example, manual
inspections of the retrieved signatures sometimes revealed
deviating capitalization. Although this occurs only rarely,
it is certainly a repairable issue that already will improve the

delivered results. Besides a number of further ideas for im-
proving the intersection algorithm we discuss in 5, it is also
clear that hiding common signatures such as the ones stem-
ming from main methods or methods inherited from Java
Object might further improve the user experience as well as
for example offering the possibility to retrieve the following
most frequent signatures that are initially not shown any-
more.

It should be obvious that common abstractions such as
”stack” deliver far better results than a search for a com-
mon programming term such as ”public”, but that is clearly
in the nature of things. Hence, identifying situations where
this technology can become helpful in practice in the future
should also be on the research agenda as performing more
meaningful evaluations that give a clear indication how help-
ful it is in terms of an increased development velocity or for
facilitating early completeness of software designs. In addi-
tion, the following section discusses some technical research
directions we have identified so far in more detail.

5. ONGOING & FUTURE WORK
In the previous sections we have given an insight into re-

cent findings derived from preliminary experiments with our
approach. Although we have presented a prototype imple-
mentation which adds additional value to the Eclipse IDE,
this is still closely tied to the coding phase of software de-
velopment. Nevertheless, there is still potential for future
enhancements of the approach and broadening the function-
ality from solely the implementation phase to the design
phase as well has the potential to significantly boost reuse
in the context of the early software life cycle. It should be
feasible to generate useful hints for class or objects variables
(i.e. attributes) with similar techniques and it is even con-
ceivable to recognize specific idioms in the source code of
operations and to derive corresponding hints for develop-
ers such as ”other developers used two nested for loops to
implement a bubblesort operation”. Since code-level idioms
are only the smallest group in the common pattern classifi-
cation by Buschmann et al. [5] it also seems feasible to lift
the abstraction level and to recognize and recommend de-
sign or even architectural patterns that are commonly used
together with a given concept in the future. As shown in
another publication [14], Code Conjurer supports reuse rec-
ommendations based upon UML class diagrams drawn with
the help of appropriate Eclipse plug-ins. This feature can
also be used in conjunction with our prototypical implemen-
tation of the design prompter. However, there is space for
further enhancements, such as the presentation of the design
recommendations which is currently limited to individual
classes. Therefore, a future release of the plug-in will draw a
UML representation of component design recommendations
as well as automatically create diagrams showing multiple
classes and their relations. This will give developers an idea
of an architectural design, derived from components found
by the search engine. The creation of the plug-in is there-
fore complemented by the integration of more sophisticated
algorithms for the creation of the intersection interfaces.

The primitive algorithm we have used so far has obvi-
ously a lot of potential for improvement. The first inherent
point for enhancement is tweaking the parameter for the fre-
quency of appearance of an operation before it is added to
the average result. This point is closely related to the ques-
tion of when signatures are considered identical. Currently,

67

signatures amongst the first 100 results, as delivered by the
search engine for various example queries. A reasonable
threshold for accepting a signature as common enough for
the design prompter seemed to require it to appear at least
20 times amongst the 100 considered results. In cases where
there were fewer than six signatures above this value we
added the following results in gray color to the table.

Table 1: Exemplary interface recommendations.
Search Term(s) Averaged Interface #

Matrix add Matrix
≈ 90 msec transpose():Matrix; 45
8, 844 results add(Matrix):Matrix; 39
732 methods toString():String; 39

multiply(Matrix):Matrix; 35
add(Matrix):void; 27
swapRows():Matrix; 24

BinaryTree BinaryTree
≈ 50 msec isEmpty():boolean; 35
1, 273 results main(String[]):void; 27
387 methods toString():String; 24

size():int; 21
height():int; 14
makeEmpty():void; 12

Stack Stack
≈ 40 msec push(Object):void; 48
68, 718 results pop():Object; 47
113 methods isEmpty():boolean; 34

toString():String; 22
pop():int; 20
push(int):void; 20

Deck Deck
≈ 50 msec shuffle():void; 55
3, 238 results dealCard():Card; 23
323 methods toString():String; 19

getCard():Card; 17
cardsLeft():int; 16
main(String[]):void; 10

CreditCard CreditCard
≈ 40 msec getNumber():String; 30
1, 148 results getCardNumber():String; 22
229 methods toString():String; 20

setCardNumber(String):void; 13
getCardType():String; 13
setNumber(String):void; 12

In addition to that, the table shows in the right row how
often each signature appeared, while the left row includes
the information how much time the calculation of the inter-
face intersections required and how many unique signatures
respectively how many results were found for each query.
Our test system contained a dual core processor with 2.8
GHz and 6 GB RAM on which this algorithm works reason-
ably fast. In other words, its response time of far less than
a second is clearly sufficient to create recommendations for
a proactive design prompter on the fly.

4.2 Discussion
In our opinion, the results presented before are already

quite promising, since they deliver pretty good recommen-
dations for our example queries with both approaches dis-
cussed in section 2; despite the fact they are based on a
relatively naive algorithm. Thus, there is clearly still a lot
of potential for further improvement. For example, manual
inspections of the retrieved signatures sometimes revealed
deviating capitalization. Although this occurs only rarely,
it is certainly a repairable issue that already will improve the

delivered results. Besides a number of further ideas for im-
proving the intersection algorithm we discuss in 5, it is also
clear that hiding common signatures such as the ones stem-
ming from main methods or methods inherited from Java
Object might further improve the user experience as well as
for example offering the possibility to retrieve the following
most frequent signatures that are initially not shown any-
more.

It should be obvious that common abstractions such as
”stack” deliver far better results than a search for a com-
mon programming term such as ”public”, but that is clearly
in the nature of things. Hence, identifying situations where
this technology can become helpful in practice in the future
should also be on the research agenda as performing more
meaningful evaluations that give a clear indication how help-
ful it is in terms of an increased development velocity or for
facilitating early completeness of software designs. In addi-
tion, the following section discusses some technical research
directions we have identified so far in more detail.

5. ONGOING & FUTURE WORK
In the previous sections we have given an insight into re-

cent findings derived from preliminary experiments with our
approach. Although we have presented a prototype imple-
mentation which adds additional value to the Eclipse IDE,
this is still closely tied to the coding phase of software de-
velopment. Nevertheless, there is still potential for future
enhancements of the approach and broadening the function-
ality from solely the implementation phase to the design
phase as well has the potential to significantly boost reuse
in the context of the early software life cycle. It should be
feasible to generate useful hints for class or objects variables
(i.e. attributes) with similar techniques and it is even con-
ceivable to recognize specific idioms in the source code of
operations and to derive corresponding hints for develop-
ers such as ”other developers used two nested for loops to
implement a bubblesort operation”. Since code-level idioms
are only the smallest group in the common pattern classifi-
cation by Buschmann et al. [5] it also seems feasible to lift
the abstraction level and to recognize and recommend de-
sign or even architectural patterns that are commonly used
together with a given concept in the future. As shown in
another publication [14], Code Conjurer supports reuse rec-
ommendations based upon UML class diagrams drawn with
the help of appropriate Eclipse plug-ins. This feature can
also be used in conjunction with our prototypical implemen-
tation of the design prompter. However, there is space for
further enhancements, such as the presentation of the design
recommendations which is currently limited to individual
classes. Therefore, a future release of the plug-in will draw a
UML representation of component design recommendations
as well as automatically create diagrams showing multiple
classes and their relations. This will give developers an idea
of an architectural design, derived from components found
by the search engine. The creation of the plug-in is there-
fore complemented by the integration of more sophisticated
algorithms for the creation of the intersection interfaces.

The primitive algorithm we have used so far has obvi-
ously a lot of potential for improvement. The first inherent
point for enhancement is tweaking the parameter for the fre-
quency of appearance of an operation before it is added to
the average result. This point is closely related to the ques-
tion of when signatures are considered identical. Currently,

67

Some occasional
methods:
variants?

Count same signatures for classes
with similar names

Monday 5 December 2011

Variability

Feature

Feature Diagram

Mandatory vs. Optional features

Feature dependencies

Variants

Variation points
Binding

Domain instances

Optional vs. Alternative variants

Single vs. Multiple features

8/30

Variable features

Monday 5 December 2011

Feature: unit/increment of functionality

9/30

Car

Transmission Engine

Manual

Suspension

Gasoline

Car

Horsepower

Transmission Engine Extras

Manual Gasoline Air
Conditioning Cruise

Suspension

Car

Horsepower

Transmission Engine Extras

Automatic GasolineElectric Air
Conditioning Cruise

Suspension

basic car

motor-head car

executive car

eco-aware car

Car

Transmission Engine Extras

Automatic Electric Cruise

Suspension

 Required in all (Mandatory) or in some (Optional) products

Monday 5 December 2011

Variable: if customization is required

Feature: unit/increment of functionality

10/30

 Required in all (Mandatory) or in some (Optional) products

Car

Transmission Engine

Manual

Suspension

Gasoline

Car

Horsepower

Transmission Engine Extras

Manual Gasoline Air
Conditioning Cruise

Suspension

Car

Horsepower

Transmission Engine Extras

Automatic GasolineElectric Air
Conditioning Cruise

Suspension

basic car

motor-head car

executive car

eco-aware car

Car

Transmission Engine Extras

Automatic Electric Cruise

Suspension

Monday 5 December 2011

Feature: unit/increment of functionality

11/30

 Required in all (Mandatory) or in some (Optional) products

Car

Transmission Engine

Manual

Suspension

Gasoline

Car

Horsepower

Transmission Engine Extras

Manual Gasoline Air
Conditioning Cruise

Suspension

Car

Horsepower

Transmission Engine Extras

Automatic GasolineElectric Air
Conditioning Cruise

Suspension

basic car

motor-head car

executive car

eco-aware car

Car

Transmission Engine Extras

Automatic Electric Cruise

Suspension

Variant: option available for a variable feature

Variable: if customization is required

Monday 5 December 2011

Variant: option available for a variable feature

Can a variable feature have several variants?
YES: Multiple / NO: Single

YES: Mutually inclusive / NO:Mutually exclusive

Feature: unit/increment of functionality

Variable: if customization is required

12/30

 Required in all (Mandatory) or in some (Optional) products

Car

Transmission Engine

Manual

Suspension

Gasoline

Car

Horsepower

Transmission Engine Extras

Manual Gasoline Air
Conditioning Cruise

Suspension

Car

Horsepower

Transmission Engine Extras

Automatic GasolineElectric Air
Conditioning Cruise

Suspension

basic car

motor-head car

executive car

eco-aware car

Car

Transmission Engine Extras

Automatic Electric Cruise

Suspension

Monday 5 December 2011

Car

Horsepower

Transmission Engine Extras

Automatic Manual GasolineElectric
Requires
Excludes

Air
Conditioning Cruise

Mandatory
Optional

Exclusive
Inclusive

Suspension

Their
source
code
repository

Metrics per SCE
- Placement of a
SCE:
mandatory/
optional features,

Mining for variable &
mandatory features

13/30

local layer

regional layer

global layer

U
L

V
S

M

C

C

Utilization = Users of the SCE
Length = LOC
Complexity = McCabe
Volatility = 0.7 * changes last year
 + 0.3 * exp. changes this year
Specificity = LOCs per variation
Mitosis = % clone differences

X: Cannot identify dependencies
X: No support for refactoring

[Faust SPE 03]♻

Several
products of
the same
domain

Monday 5 December 2011

Metrics per SCE -
How to merge a
variant into the
basic product:
mandatory/
optional functions,
single/multiple
variable features

Mining for variable &
mandatory features

14/30

X: No support for non-corresponding code
X: Cannot identify dependencies
X: No link to feature diagram

One
product of
the domain

 max(|f1|, |f2|)-LD(f1,f2)
|f1| sim(f1,f2) =

FI: Identical Functions (sim=1)
FS: Similar Functions (0<sim<1)
|FI| = 1: Identical correspondence
|FI| > 1: Multiple correspondence
|FI| = 0 & |FS| = 1: Single variant
|FI| = 0 & |FS| > 1: Multiple variant
|FI| = 0 & |FS| =0: No correspondence

LD = Levenshtein Distance

[Mende CSMR 04]♻

App. w. basic
functionality of
the domain
(core of the
line)

Car

Horsepower

Transmission Engine Extras

Automatic Manual GasolineElectric
Requires
Excludes

Air
Conditioning Cruise

Mandatory
Optional

Exclusive
Inclusive

Suspension

clone detection → candidate functions

Monday 5 December 2011

Metrics per SCE -
How to merge
several variants into
a product line
(UML-like diagram):
mandatory/optional
functions, single/
multiple variable
features

Mining for variable &
mandatory features

15/30

X: No support for non-corresponding code
X: Can identify mutually exclusive variants, but no feature dependencies
X: No link to feature diagram

Several
products of
the domain

 LD(f1,f2)
max(|f1|, |f2|)sim(s1,s2) = 1-

 Mn,i ∩ Mn,j
Mn,i ∪ Mn,jMn=

 Dn,i ∩ Dn,j
Dn,i ∪ Dn,jDn=

Mni = Modules for variant i at
 nesting n
Dni = Dependencies for
 variant i at nesting n

IF entities are identical->‘kernel’
IF variant in all products -> ‘variant’
IF variant in some products -> ‘optional’

[Frenzel WCRE 07]♻

App. w. basic
functionality
of the domain
(core of the
line)

Car

Horsepower

Transmission Engine Extras

Automatic Manual GasolineElectric
Requires
Excludes

Air
Conditioning Cruise

Mandatory
Optional

Exclusive
Inclusive

Suspension

Monday 5 December 2011

Variability

Feature

Feature Diagram

Mandatory vs. Optional features

Feature dependencies

Variants

Variation points
Binding

Domain instances

Optional vs. Alternative variants

Single vs. Multiple features

16/30

Variable features

Monday 5 December 2011

Car

Horsepower

Transmission Engine Extras

Automatic Manual GasolineElectric
Requires
Excludes

Air
Conditioning Cruise

Mandatory
Optional

Exclusive
Inclusive

Suspension

Car

Transmission Engine

Manual

Suspension

Gasoline

Car

Horsepower

Transmission Engine Extras

Manual Gasoline Air
Conditioning Cruise

Suspension

Car

Horsepower

Transmission Engine Extras

Automatic GasolineElectric Air
Conditioning Cruise

Suspension

basic car

motor-head car

executive car

eco-aware car

Car

Transmission Engine Extras

Automatic Electric Cruise

Suspension

Feature
Diagram

YES: Optional / NO: Alternative variants
Is the corresponding
variable feature required?

17/30

Monday 5 December 2011

Feature diagram
of the domain:
mandatory/
optional
features, single/
multiple variable
features

18/30

X: Low-level diagram
X: Cannot identify dependencies
X: Results depend on the variety of the products of the domain

Several
products of
the domain

♻

Starting
SCEs

Autom Softw Eng (2009) 16: 101–144 115

Table 3 Fragment of the metamodel of the Applet FSML

FSML Feature <Pattern Expression>

[0..*] Applet <class>

![1] extendsApplet <assignableTo: ’Applet’>

[0..*] showsStatus <callsReceived: ’showStatus(String)’>

[0..1] message (String) <valueOfArg: 1>

[0..1] listensToMouse

![1] implementsMouseListener <assignableTo: ’MouseListener’>

![1] registers <callsReceived: ’addMouseListener(IMouseListener)’>

[1] deregisters <callsReceived: ’removeMouseListene(IMouseListener)’>

[1] deregistersSameObject <argument: 1 ofCall: ../../registers sameAsArg: 1 of ..>

[1] registersBeforeDeregisters <methodCall: ../../../registers before: ../..>

[0..*] thread <field>

![1] typedThread <fieldOfType: ’Thread’>

[1] initializesThread <assignedNew: ’Thread(IRunnable)’>

[1] nullifiesThread <assignedNull>

[0..*] parameter <callsReceived: ’getParameter(String)’>

[0..1] name (String) <valueOfArg: 1>

[1] providesParameterInfo <methods: ’getParameterInfo()’>

Table 4 Fragment of the metamodel of the Struts FSML

FSML Feature <Pattern Expression>

[0..*] Action <class>

![1] extendsAction <assignableTo: ’Action’>

[0..1] extendsDispatchAction <assignableTo: ’DispatchAction’>

[0..*] actionMethod <methods: ’*(ActionMapping, ActionForm, [. . .], [. . .])’>

[0..1] overridesExecute <methods: ’execute(ActionMapping, ActionForm, [. . .])’>

[0..*] forwardImpl <callsTo: ’findForward(String)’>

[1] name (String) <valueOfArg: 1>

to. Values of the parameters can also be the patterns that other features correspond
to, in which case, the features need to be specified using path expressions. For exam-
ple, the pattern expression attached to the feature deregistersSameObject in
Table 3 requires two method calls and uses paths “../../registers” and “..”
to retrieve calls that the features registers and deregisters correspond to.

We present the metamodels for two reasons: (i) to give the reader examples of
concrete pattern expressions and (ii) to help the reader understand the tables with
precision and recall presented in Sects. 6.1 and 7.3.

The mapping definitions of the analyzed FSMLs use pattern expressions, whereas
the prototype implementations of the FSMLs use code queries for matching the re-
quired code patterns. During reverse engineering, the mapping definitions are inter-
preted by first determining the mapping type that is used by analysing the pattern

[Antiweckz JASE 09] 

Mining for
feature diagrams

Mapping of entities → operations
done over the data (SCqueries)

Essential features, therefore,
are the minimum
characteristics required to
match a concept instance.
A parent feature cannot exist
without all of its essential

subfeatures.

A mandatory missing from its
parent =config. error.
A essential missing from its
parent = no parent feature.

[0..1] optional
[1] mandatory
[0..*] / [1..*] multiple
! Essential

Car

Horsepower

Transmission Engine Extras

Automatic Manual GasolineElectric
Requires
Excludes

Air
Conditioning Cruise

Mandatory
Optional

Exclusive
Inclusive

Suspension

Monday 5 December 2011

Feature diagram
of the domain:
mandatory/
optional features,
exclusive/
inclusive variants

19/30

X: Cannot identify dependencies
X: Results depend on the variety of the products of the domain

Several
products of
the domain

Mapping of
concepts

Mining for
feature diagrams

[Yang WCRE 09]

!"#$%&'()' *+%,'-.',/&'%&0-1&%&2'.&+,$%&'3,%$0,$%&'4&.-%&'%&0-53,%$0,"-5

!"#$%&'6)' *+%,'-.',/&'."5+7'%&0-1&%&2'2-8+"5'.&+,$%&'8-2&7

,"-59'+7,/-$#/'8-3,'-.',/&'1+%"+,"-5',:;&3'+%&'0-%%&0,'<=>)?@A9'

,/&%&' 3,"77' &B"3,' 3-8&' .&+,$%&3' ,/+,' +%&' 8"307+33"."&2' "5'

1+%"+4"7",: &1+7$+,"-5)' C.,&%' +5+7:D"5#' ,/&' 0+$3&39' E&' ."52'

,/+,'8-3,'-.',/&';%-47&83'%--,'"5'"50-8;7&,&5&33'2+,+'+00&33'

3&8+5,"03'2$&',-',/&'7"8",+,"-53'-5',/&'0-1&%+#&'-.'2:5+8"0'

+5+7:3"3' +52' ,/&'2+,+'8-2&7'8+;;"5#3)'F/&' 7"8",+,"-53'E"77'

4&'2"30$33&2'"5',/&'5&B,'3$43&0,"-5

!" !#$%&$$#'(

)* +',,-%.(-$$/0(1/+'234-.-(-$$
G5' -$%'8&,/-29' ,/&' 0-%%&0,5&33' +52' 0-8;7&,&5&33' -.' ,/&'

%&0-1&%&2' 2-8+"5' .&+,$%&' 8-2&7' +%&' 7+%#&7:' "5.7$&50&2' 4:'

,/%&&'.+0,-%3H',/& 5$84&%'-.'%&.&%&50&'+;;7"0+,"-53'+52',/&"%'

%&;%&3&5,+,"1&5&33I',/&'0-1&%+#&'-.',/&'2:5+8"0'+5+7:3"3'.-%'

JKL',%+0"5#I'+52',/&'M$+7",:'-.',/&'2+,+'30/&8+'8+;;"5#3)

F/&'."%3,';%-47&8'0+5'4&'%&3-71&2'4:'0+%&.$77: 0/--3"5#'

%&.&%&50&'+;;7"0+,"-53'.-%'.&+,$%&'8-2&7'%&0-1&%:)'G,'"3'E-%,/'

5-,"5#',/+,'+;;7"0+,"-53'2&1&7-;&2'"5'2"..&%&5,';%-#%+88"5#'

7+5#$+#&3 0+5' 4&' &8;7-:&2 ,-#&,/&%' .-%' .&+,$%&' 8-2&7'

%&0-1&%:9' 3"50&',/&'+5+7:3"3'4+3"3'-.'-$%'8&,/-2' "3' ,/&'2+,+'

+00&33'3&8+5,"03'E",/'2+,+'8-2&7'8+;;"5#3)'F/&'-57:',/"5#'

,/+,' 3/-$72' 4&' 0-53"2&%&2' "5' +22","-5 "3' ,/&' JKL' ,%+0"5#'

"8;7&8&5,+,"-5' .-%' 2"..&%&5,' 7+5#$+#&3)'F/&' 5$84&%' -.' ,/&'

0/-3&5' +;;7"0+,"-53' "5.7$&50&3' ,/&' 1+%"+4"7",:' &1+7$+,"-5'

#%&+,7:)'F/&%&.-%&9'"51-71"5#'8-%&'+;;7"0+,"-53'"5',/&'%&1&%3&'

+5+7:3"3'"3'+7E+:3'4&,,&%)

G5'-$%'0+3&' 3,$2:9'+7,/-$#/'E&'0+%&.$77:'2&3"#5'+' 3&%"&3'

-.' ,&3,' 0+3&3' 4+3&2' -5' ,/& $3&%N+28"5"3,%+,-%' 2-0$8&5,39'

,/&%&' +%&' 3,"77' 3-8&' 8"33"5#' 2+,+' +00&33' 3&8+5,"03)' !-%'

&B+8;7&9' O2&7&,&' +77' ,/&' ;-3,3' "5' +' 4-+%2P "3' +' 0-88-5'

.&+,$%&' +8-5#' ,/&' ,/%&&' .-%$8' +;;7"0+,"-539' 4$,' ",' "3'

"2&5,"."&2'+3'+'1+%"+,"-5'2$&',-',/&'8"33"5#'-.'+'1-4-.- +00&33'
.-%' +5' +;;7"0+,"-5)' G5' ,/+,' +;;7"0+,"-59' ,/&' 1-4-.- 3,+,&8&5,'
E"77' 4&' &B&0$,&2' -57:' ".' ,/&' 4-+%2' "3' 5-,' &8;,:)' F/"3' "3' +'

,&0/5"0+7'2&,+"7',/+, "3'5-,'"507$2&2'"5',/&'2-0$8&5,39'3-'",'"3'

5&0,&2'"5'-$%',&3,'0+3&3)'!%-8',/&'0+3&'3,$2:9'E&'."52',/"3'

Q"52'-.'8"33"5#'2+,+'+00&33'3&8+5,"03'8+:'"5.7$&50&'4-,/',/&'

.&+,$%&'3,%$0,$%&'+52',/&'1+%"+4"7",:'&1+7$+,"-5)

R+,+' 30/&8+'8+;;"5#3' +%&' &3,+47"3/&2' -5' ,/&' +5+7:3,3S

$52&%3,+52"5#' -5' ,/&' 2+,+' 30/&8+3)' C00-%2"5#' ,-' -$%'

&B;&%"&50&9' ",' "3' &+3:' ,-' 2&."5&' +' 3&,' -.' #--2T&5-$#/'

8+;;"5#39'3"50&'8-3,'-.',/&'4+3"0'4$3"5&33 &5,","&3'+52',/&"%'

??????

Consolidate
features

Mapping of entities → operations
done over the data (DB access) +
FCA

Car

Horsepower

Transmission Engine Extras

Automatic Manual GasolineElectric
Requires
Excludes

Air
Conditioning Cruise

Mandatory
Optional

Exclusive
Inclusive

Suspension

Monday 5 December 2011

Variability

Feature

Feature Diagram

Mandatory vs. Optional features

Feature dependencies

Variants

Variation points
Binding

Domain instances

Optional vs. Alternative variants

Single vs. Multiple features

20/30

Variable features

Monday 5 December 2011

Car

Transmission Engine

Manual

Suspension

Gasoline

Car

Horsepower

Transmission Engine Extras

Manual Gasoline Air
Conditioning Cruise

Suspension

Car

Horsepower

Transmission Engine Extras

Automatic GasolineElectric Air
Conditioning Cruise

Suspension

basic car

motor-head car

executive car

eco-aware car

Car

Transmission Engine Extras

Automatic Electric Cruise

Suspension

Feature
Diagram

Are there constraints
(dependencies) among them ?

Requires: 1st = 2nd one /
Excludes: 1st or 2nd

21/30

Car

Horsepower

Transmission Engine Extras

Automatic Manual GasolineElectric
Requires
Excludes

Air
Conditioning Cruise

Mandatory
Optional

Exclusive
Inclusive

Suspension

Monday 5 December 2011

Car

Horsepower

Transmission Engine Extras

Automatic Manual GasolineElectric
Requires
Excludes

Air
Conditioning Cruise

Mandatory
Optional

Exclusive
Inclusive

Suspension

Variability analysis:
(un)acceptable
feature tangling

X: Cannot mine for require & exclude relations

Single app.

Mapping of
tokens to
features &
files to
features

22/30

Mining for variability
dependencies

[Lai OOPSLA 99]

Spread (f) = 5 / 20
Tangle(f) =250/500
Density(f) = 500/3

.* x 500

.... x 250

Overlap
Order

✔ ✖

..✔ ✖

Metrics per feature

Monday 5 December 2011

Variability analysis:
Overlap, sub-
features,
equivalence

X: Cannot mine for require & exclude relations

Traces of
several
scenarios
(execution
of feature)

23/30

Mining for variability
dependencies

4

scenarios from Table 1 using the Rational PureCoverage
tool. By a footprint we mean the classes that were executed
while testing a scenario. The numbers in Table 2 indicate
how many methods of each class were used. For instance,
scenario “A” used ten methods of the class CAboutDlg and
three methods of the class CSettingsDlg. Table 2 does not
display the actual methods in order to reduce the complex-
ity of this example (the footprint graph shown later would
otherwise get too big). Nevertheless, by only using classes
the generated traces will still be useful, albeit, course-
grained. If more fine-grained traces are needed then trace
analysis has to be performed by observing the methods of
classes or even the lines of code. Our approach remains the
same.

Hypothesizing is the only manual activity of our approach.
The goal of this activity is to reason (hypothesize) about
potential trace information. One potential trace could be
from scenario A to the use case About in Figure 2 (see also
Table 4). Another potential trace could be from the high-
level class PopreadApp to the implementation classes
CApp and CMainWin (see also Table 3). Our approach re-

quires only a fairly limited amount of hypothesized trace
information; otherwise, the cost of using it would be too
high. Table 4 and Table 3 show a list of twelve traces we
hypothesized. We assume that most traces are at least par-
tially correct; however, our approach can pinpoint wrong
traces plus create new ones by matching the derived trace
information against the observed trace information. These
traces, together with the trace observations that were auto-
matically generated (Table 2) can now be used for further
reasoning.

5 ATOMIZING
In order to reason about traces and how they relate to
model elements, we need to intertwine scenarios, model
elements, their footprints, and hypothesized trace informa-
tion. In order to do this, we have devised a footprint graph.
Figure 3 depicts the complete footprint graph for the eight
scenarios in Table 1. This graph also forms the foundation
for the remaining activities of our approach: Generalizing
and Refining.

One property that graph has is that footprints of observed
trace information are split up into as many nodes as needed
to explicitly represent all possible overlaps between scenar-
ios (overlaps are footprints that any two scenarios have in
common). For instance, scenario “A” has the observed
footprints {0/8} (Table 2) and, similarly, scenario “B” has
the observed footprints {3/5/6/8} (see also nodes “A” and
“B” throughout Figure 3). However, both scenarios also
overlap since they share the footprint {8} which corre-
sponds to the implementation class CMainWin (Table 2). In
order to capture that overlap, another node was created
(node “AB”) and that node was then declared to be a
“child” of both nodes “A” and “B.” Nodes “A” and “B”
also have footprints they do not share but those are of no
importance unless they overlap with footprints of yet other
scenarios.

Once scenario “C” is added to the footprint graph, it is
found that it overlaps with scenarios “A” and “B.” In fact,
the footprint of scenario “B” is a subset of the footprint of
scenario “C.” The node for scenario “B” is thus made into a
child of the node for “C” (called “C/G” in Figure 3). In rare
cases it may even happen that two scenarios have the exact
same footprint as in the case of scenarios “C” and “G.” A
common node for both “C” and “G” was thus created, ergo
its name “C/G.” Note that scenario “C” also overlaps with
scenario “A,” however, that overlap was already captured
via its link to node “B” which, in turn, has node “AB” as
one of its children. Therefore, another property of our
graph is that overlaps between scenario footprints are cap-
tured in a hierarchical manner to minimize the number of
nodes required.

Building a footprint graph is not very difficult since it only
involves two major steps. For each new scenario added to
the graph, the first step tries to identify the largest node
(large with respect to the number of footprints covered) that
is either equal to or part of the new scenario (e.g., as “C”
was equal to “G” or as “B” was a part of “C”). If two nodes

Table 2. Observeable Scenario Footprints
A B C D E F G H

CAboutDlg 0 10 10
CILLDB 1 3 2 2 2 4
CILLDBSet 2 4 4
mailreader 3 3 4 7 1 1 5 1
parsing 4 6 6
POP3 5 8 10 2 2 2 11 1
CPOP3Dlg 6 4 4 1 4 4 4
CAPP 7 1 1
CMainWin 8 3 5 5 3 6 7 5
CSettingsDlg 9 15

Class Scenario

Table 3. Hypothesized Trace Information
Model Elements System

CD::Request [c] mailreader, POP3 {3/5}
CD::DBBackEnd [e] CILLDB, CILLDBSet, POP3 {1/2/5}
CD::PopreadApp [a] CApp, CMainWin {7/8}
CD::UserInterface [b] CAboutDlg, CPOP3Dlg, CSettingsDlg

{0/6/9}

Table 4. Hypothesized Trace Information
Scenario Model Elements

A UC::About [p]
B DFD::Inbox, DFD::GetMail [g/h]
C CD::Request, CD::Inbox, CD::Parser [c/d/f]
D UC::Settings [o]
E CD::PopreadApp [a]
F CD::PopreadApp, CD::UserInterface [a/b]
G UC::CheckRequest, DFD::Inbox, DFD::GetMail,

DFD::ParseRequest, DFD::DeleteMail,
DFD::DatabaseBackEnd [m/g/h/i/j/k/l]

H CD::Inbox [d]

126

Overlap Sub-feature Equivalence

[Egyed ICSE 01]

Car

Horsepower

Transmission Engine Extras

Automatic Manual GasolineElectric
Requires
Excludes

Air
Conditioning Cruise

Mandatory
Optional

Exclusive
Inclusive

Suspension

Monday 5 December 2011

Variability analysis:
configuration
dependencies

X: Need a specific syntax for the configuration of the products
X: Just define when the relations occur. No mining proposed.

24/30

Mining for variability
dependencies

IF !vpx → vpy
IF vpx → (vpy,vyn)
IF (vpx,vxm) → !vpy
IF (vpx,vxm) → (vpy,vyn)

Dependencies
variation points -
variants:

[Jaring PhD 05]⚖

Code that
varies

Variables
representing
variants (vxm vyn)

Variables
representing
variation points
(vpx vpy)

Car

Horsepower

Transmission Engine Extras

Automatic Manual GasolineElectric
Requires
Excludes

Air
Conditioning Cruise

Mandatory
Optional

Exclusive
Inclusive

Suspension

Monday 5 December 2011

Feature diagram of
the domain:
mandatory/optional
features,
exclusive/inclusive
variants

X: Results depend on the variety of the products of the domain

Several
products of
the domain

25/30

Mining for variability
dependencies

[Czarnecki PLC 08]

paint on start off init on

must override destroy off stop off

Applet

paint [75%] start [59%]

destroy [42%] stop [53%]

init [97%]

Applet

destroy encourages init

start encourages stop

stop encourages start

init encourages destroy

stop given start [84%]

start given stop [97%]

paint given destroy [88%]

paint given stop [88%]

init given start [97%]

init given paint [98%]

(a) A PFM specified by an expert (b) An automatically mined PFM (c) Interactive Configuration

Figure 2. A PFM of Java applets: specification, mining, and configuration

Apart from being interpreted as belief measures, prob-
abilities can also be given a frequentist interpretation, in
which a probability is viewed as the relative frequency of
seeing a particular outcome of an experiment in a large
number of trials. This perspective on probability naturally
fits the mining applications. Figure 2b presents a PFM for
the applet domain mechanically mined from a sample of 64
applets1. This model has been obtained by applying the pro-
cedure presented in Section 6. It is instructive to discuss the
differences and similarities between these two models.

First, the mined model lacks the “must override” group
as the automatic mining procedure is not able to introduce
abstractions. We believe that such improvements need to be
done by experts themselves. Secondly, probabilistic depen-
dencies are specified using probabilistic logics constraints
(and not linguistic conventions). Notice for example, the
additional constraint stop given start with the conditional
probability of in the mined model corresponds to start

encourages stop in the expert model. The percentages in
nodes indicate the strengths of parent-child relationships.
For example, the conditional probability of destroy given init

is . Our expert says that encourage and on-by-default
rules should be created if the conditional probability is at
least . Furthermore, the off-by-default rules are should
be created when the probability is less than . The min-
ing engine was tuned accordingly for this example.

Regardless of whether the PFM has been mined or de-
signed it can support automatic derivation of configurations
by means of choice-propagation, auto-completion, and de-
fault propagation. Figure 2c presents a possible sight of a
configuration tool—a screen shot created using the Hugin
[28] tool, which has been used as a configuration engine in
our project. In the figure, a user has just selected to over-
load init—the highlighted bar signifies that this feature is

1http://gsd.uwaterloo.ca/projects/fsmls/applet-fsml/applet-examples/

now included with complete certainty. The other bars show
the probabilities of the remaining features. This could of
course be visualized differently; for example by updating
the most probable defaults in a form, or by prioritizing sev-
eral most likely choices at the top of a drop-down list.

The probability of stop is around 50%, which indicates
almost no preference for or against it (no information). We
expect, however, that as soon as the user chooses to overload
start, the probability bar of stop will increase significantly
towards true. Indeed, in such a case Hugin reports 86%.

3 Semantics of PFMs

Before delving into the intricacies of PFMs, it is worth
recalling the semantics of ordinary feature models as de-
fined via translation to propositional logic [6, 14] (for
more general discussion of feature model semantics see
Schobbens et al. [34]. An ordinary feature model, such
as the one in Figure 3a, denotes a set of legal configura-
tions, as shown in Figure 3c. A legal configuration is a
set of features selected from the feature model according to
its semantics. The set of legal configurations is given by
conjoining propositional formulas defined over a set of fea-
tures. The set of propositional formulas to be conjoined is
systematically constructed for a given feature model. It con-
tains (i) the root feature,2 (ii) implications from all subnodes
to their parents, (iii) additional implications from parents to
all their mandatory features, (iv) implications from parents
to groups (as defined below), and (v) any additional con-
straints represented as propositional formulas. An implica-
tion from a parent feature to its subfeatures that
form an OR-group has the following form:

(1)

2Unlike in our previous work [14], we require that the root feature is
always present, for consistency with PFMs, for which this choice is natural.

!"!"

Authorized licensed use limited to: The Open University. Downloaded on November 20, 2009 at 08:59 from IEEE Xplore. Restrictions apply.

Association rules = belief
(frequent interpretation)

p (A|B) = p (AB) / p(A)
 = (A ∩ B /A ∪B) / (A)

req = p(A|B)
exc = p(!A|B)

⚖

Mapping of
SCEs to
feature
diagram

Car

Horsepower

Transmission Engine Extras

Automatic Manual GasolineElectric
Requires
Excludes

Air
Conditioning Cruise

Mandatory
Optional

Exclusive
Inclusive

Suspension

Monday 5 December 2011

Feature diagram
of the domain:
mandatory/
optional
features, single/
multiple variable
features

X: Assumes implementation with aspects.
X: Focuses on composition of features
 i.e. used to detect order or invalid configs.

Variable
features impl.
as aspects

26/30

Mining for variability
dependencies

[Parra ECSA 10]

A

B

C

A reqs B = pointcut (A) ∩ model(B)

B exc C = pointcut(B) ∩ pointcut(C)

⚖

A model of the
aspects
-SCEs affected
Var. points
impl. as
pointcuts

Variants impl.
as advices

Car

Horsepower

Transmission Engine Extras

Automatic Manual GasolineElectric
Requires
Excludes

Air
Conditioning Cruise

Mandatory
Optional

Exclusive
Inclusive

Suspension

Monday 5 December 2011

Variability

Feature

Feature Diagram

Mandatory vs. Optional features

Feature dependencies

Variants

Variation points
Binding

Domain instances

Optional vs. Alternative variants

Single vs. Multiple features

27/30

Variable features

Monday 5 December 2011

Car

Horsepower

Transmission Engine Extras

Automatic Manual GasolineElectric
Requires
Excludes

Air
Conditioning Cruise

Mandatory
Optional

Exclusive
Inclusive

Suspension

Variant: option available for a variable feature

Feature: unit/increment of functionality
Mandatory: required in all products
Variable: customization required

Variation point: placeholder that stores the variant of a variable
feature

Binding: assigning a variant to a variation point

?

28/30

Monday 5 December 2011

Car

Horsepower

Transmission Engine Extras

Automatic Manual GasolineElectric
Requires
Excludes

Air
Conditioning Cruise

Mandatory
Optional

Exclusive
Inclusive

Suspension

How to extend a
framework:
hotspots/hooks →

variation points
cold-spots/templates →

mandatory part of the
variable feature

users of hooks →
variants

X: Requires several applications using the same framework.

Several
products using
the same
framework
(i.e. of the same
domain)

Mining for variation
points and variants

29/30

Input: UsageMetrics of classes and methods, HT percentage
Output: Hotspot hierarchies and their dependencies
1:SortedMET = Sort methods based on their usage metric values;
2:foreach METi in SortedMET {

if (UMi != 0)
if (Position of METi ≤ (HT * Size of SortedMET))

Set METi type as HOTSPOT ;
}

3:{C1, ... Cn} = Group HOTSPOT METi based on their
declaring classes;

//Assign ranks to each Ci and classify into templates and hooks
4:foreach Ci in {C1, ... Cn} {

Rank of Ci = Minimum rank among all METi of the Ci;
if Ci is an Interface or Abstract class or (EXi > INi)

Set type of Ci to HOOK;
otherwise

Set type of Ci to TEMPLATE;
}

5:Group Ci of the same type into hierarchies based on inheritance;
6:Associate hook hierarchies to template hierarchies;
7:Define dependencies between template hierarchies;
8:Output hook and template hierarchies as hotspot hierarchies;

Fig. 5. Algorithm used for detecting hotspots through computed
UsageMetrics

Fig. 6. Example classes of a sample framework

HT of 45%, SBC identifies the methods such as m3 1, m3 2,
m3 3, and c1 as hotspot methods. SBC groups the hotspot
methods based on their declaring classes. The resulting classes
are sorted based on the minimum rank among included hotspot
methods in each class. In the current example, the grouping

Input: A method Mi of a class Cj

Output: Is the method a coldspot or not?
1:Return false if the method is reused atleast once;
2:if Cj is an interface

Return true if all implemented methods of Mi are coldspots;
Otherwise return false;

3:if Mi is abstract
Return true if all overridden methods of Mi are coldspots;
Otherwise return false;

4:Return true if all callers of Mi are coldspots
Otherwise return false;

Fig. 7. Algorithm for detecting whether a method is a coldspot.

process results in classes C3 (methods: m3 1, m3 2, and
m3 3), C1 (methods: c1 and m1 1), and C2 (methods: c2

and m2 1). After grouping, SBC uses computed metrics of
classes to classify these classes further into templates and
hooks. The criteria used for classifying hotspot classes into
templates and hooks are shown in Step 4 of the algorithm
shown in Figure 5. For the current example, SBC identifies
class C3 as a HOOK class, and classes C1 and C2 as TEMPLATE
classes. SBC further groups the classes of the same category
based on their inheritance relationship. For example, if C1 has
a parent class P1 and both classes are classified as TEMPLATE
classes, SBC groups C1 and P1 into the same hierarchy.

SBC identifies dependencies among the detected hotspot
hierarchies based on arguments passed to methods of those
classes. For example, if a template class, say X, has a con-
structor that requires an instance of another template class, say
Y, then SpotWeb captures dependency of the form “X → Y”,
which describes that X requires Y. SBC identifies two kinds of
dependencies: TEMPLATE_HOOK and TEMPLATE_TEMPLATE.
A TEMPLATE_HOOK dependency defines a relationship be-
tween a template hierarchy and a hook hierarchy. SBC identi-
fies that a template hierarchy is dependent on a hook hierarchy
if methods in the template hierarchy types include some
classes in the hook hierarchy as arguments. Such a dependency
describes that the users have to first define a new behavior
for those related hook classes, say extend the classes, and
use the instances of those classes as arguments. For example,
SBC identifies that the class C1 has a TEMPLATE_HOOK
dependency with the class C3 as the method m1_1 requires
an instance of C3 as an argument. Similarly, SBC identifies
TEMPLATE_TEMPLATE hierarchies when one template hierar-
chy is dependent on another template hierarchy. For example,
the class C2 has a TEMPLATE_TEMPLATE dependency with the
class C1.

2) Identification of coldspots: SBC identifies classes and
methods (of the input framework) that are rarely or never used
by gathered code examples as coldspots. However, detecting
coldspots based on only the UsageMetrics can give many
false positives. For example, the UsageMetrics for an abstract
method defined in a class can be zero, as gathered code
examples refer to the concrete implementation provided by

IN=instantiations
EX=extensions
OV=overrides
IM=implementations
UM=usages (+ above)

rank & classify SCEs in the
framework based on metrics:

[Thummalapenta MSR 08]

Monday 5 December 2011

Gaps to fill

• Current mining approaches depend on specific implementation
techniques

• E.g. variation points as configuration variables, variable features as
framework usage

• The amount of information required sometimes outweigh the benefits

• No support for newcomers (mining to introduce variability to single
apps)

• No support for a-priori analysis of variability decisions (cost-benefit
of a variant feature)

• Implementation issues as business opportunities e.g. “compulsive
branching”

30/30

Monday 5 December 2011

A. Lozano
An overview of techniques for detecting software variability

concepts in source code
In Proc. Int'l Workshop on Software Variability Management

pp. 141-150
variability@ER, 2011.

Monday 5 December 2011

