
Analyzing similarity of multiple cloned software systems

Slawomir Duszynski
slawomir.duszynski@iese.fraunhofer.de

Fraunhofer IESE

Kaiserslautern, Germany

November 28, 2011
The 16th CREST Open Workshop

UCL London

Motivation for Multi-System Analysis

The need for systematic software reuse is often recognized only after
development of a group of similar software systems

Common practice: clone and adapt one of existing variants, no reuse mechanisms
“Software mitosis” (Faust 2003)
Variants are maintained independently from each other
Further variants emerge in the same way

Examples from the industry
4 cloned variants, ca. 1.5 MLOC each
14 cloned variants, ca. 200 KLOC each

With a growing number of variants,
maintenance becomes difficult

Redundant maintenance and QA effort

[D. Faust, C. Verhoef: Software Product Line Migration and Deployment. 2003]

[D. Beuche: Transforming Legacy Systems into Software Product Lines. SPLC 2010]

2

Having many similar variants, the company has two options:
1: Develop a new PL from scratch – costly, loss of past investment
2: Migrate the existing products – difficult, and costly too

Typical migration problems
Variability in the existing code is not known
Code-level variability might differ from feature-level variability

(Yoshimura 2006a)
High risk of incorrect reuse decisions

(Garlan 1995; Kolb 2006)

Research problem: detailed information about the code variability is needed
variability needs to be recovered and understood
difficult for large systems and many variants

Motivation for Multi-System Analysis

* [K. Yoshimura, D. Ganesan, D. Muthig: Assessing Merge Potential of Existing Engine
Control Systems into a Product Line. SEAS 2006]

“the portion of functional commonality among two products is about 60-75%;
their implementations, however, share as little as around 30% of code”

3

Provides both abstract and detailed information
Available for any part of the code
Available for any variant or variant intersection

Is scalable
High number of LOC
High number of variants
Suitable abstraction needed (providing just a flat list of similarities is not scalable!)

Is specifically targeted at variants, not versions
Versions form a time-ordered list

It is enough to analyze n-1 pairs
Variants exist in parallel and cannot be ordered

Analysis of pairs needed
Result cannot depend on any variant ordering

[IESE context] Is understandable to practitioners

We need an analysis technique that:

2
)1(−nn

4

Existing Approaches

Similarity metrics calculated on the whole systems (Yamamoto2005)

Only high-level information: it is known that there are differences, but it is not known
where they are

Clone detection and manual result analysis (Yoshimura2006b)

No scalability (lots of manual work, for just 2 variants)

Clone detection and further result processing (Mende2008)

Unsuitable result presentation

[T. Yamamoto, M. Matsushita, T. Kamiya, K. Inoue: Measuring similarity of large software
systems based on source code correspondence. 2005]

[K. Yoshimura, D. Ganesan, and D. Muthig: Defining a strategy to introduce a software
product line using existing embedded systems. EMSOFT 2006]

[T. Mende, R. Koschke: Supporting the Grow-and-Prune Model in Software Product Lines
Evolution Using Clone Detection. 2008]

5

Existing Approaches
Information on Any Variant Intersection: Not Available

Pair-wise result presentation

Problem: incomplete information

Example 1: Two different situations
(above) cannot be distinguished as they
provide the same pair-wise result

Example 2: impossible to answer
questions such as “where is the core of
my potential product line?”

Problem: complex result

O(n2) variant pairs!
Result presentation in (Mende2008)

6

Consider three source code files A, B and C
The task: recognize and characterize the commonalities and variabilities
A human could use the diff tool to understand the differences

Practical problems in a product line context:
Scalability problem: for n systems there are n(n-1)/2 pairs. Hard to understand for a
human (e.g. n=6 –> 15 different pairs to be related to each other)
Comparison delivers pair-wise results such as “same” and “different”: but for the
product line, we want to know which lines are core and which are unique

Variant Analysis
Example Situation

7

For each variant, list its elements in a matrix
Add union matrix to represent the total analyzed code
Fill the matrix

Rows: variant elements
Columns: all the existing variants; additionally: number of variants where the element
occurs
Cells: occurrence of the elements in the variants (1: occurrence, 0: no occurrence)

Redefine the line status to make it appropriate for product lines
Not “same” and “different”, but “core” (Sum=n), “shared”, “unique” (Sum=1)

Variant Analysis
Occurrence Matrices

8

Instead of a group of diff-ed pairs…

… the result is a n-ary diff performed on all the involved variants:

Using the same principle, a comparison for any number of variants is possible

Variant Analysis
n-ary Diff Results

9

Variant Analysis – Visualization
Venn Diagrams: Not the way to go…

Venn diagrams: very useful for
small number of sets

Harder to understand
for larger number of sets

Number of
diagram areas = 2n

10

Bar diagrams are a way to visualize occurrence matrices
One bar created for each occurrence matrix (in total: n+1 bars)

Size of the bar = number of elements in the matrix
Bar parts symbolize the core, shared and unique elements in the variants
Sizes of the particular parts reflected in the diagram

Variant Analysis
Visualization: Bar Diagrams

11

Variant Analysis
Information on Any Variant Intersection Available

The information provided by Variant Analysis is complete

Two example situations easily distinguishable

Any set intersection can be obtained using subset calculations

It is know how much elements fulfill a criterion and which elements they are

Information can be easily presented even for a high number of variants

12

Sometimes a specific subset of the analyzed system group is interesting, e.g.:
All elements shared by at least k systems
Elements common for a given system and other systems
Subsets such as A ∩ ¬B ∩ ¬C ∩ D

Subset elements can be found by evaluating the element occurrences in the matrix
Visualization on a bar diagram: display relevant bar parts and associated numbers
Visualization in text editor: highlight relevant text lines in the text editor

Variant Analysis
Subset Calculations

13

Variant Analysis
Scalable Result Abstraction and Navigation

Variant Analysis integrated into Fraunhofer SAVE tool (Eclipse plug-in)
Top-down result exploration possible using structural architectural views

Detect interesting
areas on the high
level structure
Go to details only
where relevant
results exist
Example:
the folders “core”
vs. “data”
in the figure

14

Good scalability and performance
Four 1.5 MLOC variants (implemented in C++)
analyzed in 7 minutes

Subset calculations on all rows
time range from 312ms to 328ms

Variant Analysis
Industrial Application

15

Diff is just an example data source!

The Variant Analysis model is generic
Different system representations possible

Analysis phases can be adapted to specific needs
Different similarity detection algorithms possible

16

Generalization
Equivalence Relation and Unambiguous Assignment

Bar diagrams and occurrence matrices can be applied to analyze and visualize any kind
of variability

Code, non-code artifacts, model elements, features, …

The prerequisite for using the technique is a “correct” filling of the occurrence matrix

Equivalence relation across the variants’ elements needed
Reflexive ∀x∈S: x rel x == true
Symmetric ∀x,y∈S: x rel y ⇒ y rel x
Transitive ∀x,y,z∈S: x rel y ∧ y rel z ⇒ x rel z

Unambiguous assignment of equivalent elements across variants
Necessary if more than one element from variant A is equivalent to a given
element of variant B

[S. Duszynski: Visualizing and Analyzing Software Variability with Bar Diagrams and
Occurrence Matrices. SPLC 2010]

[S. Duszynski, J. Knodel, M. Becker: Analyzing the Source Code of Multiple Software
Variants for Reuse Potential. WCRE2011]

17

Limitations

Typical situation in
reverse engineering:

Use syntax-level
approaches…

… trying to derive
meaningful (semantic-
level) results

Variant Analysis retrieves
just the syntactic similarity

It also depends on the
structure similarity:
comparing non-cloned
system does not deliver
interesting results

18

Using the obtained information
Relation to scoping and other information sources

Scoping

Domain

Requirements

Features

Reverse engineering variability

Similarities and differences

Structures

Fine-grained data

Future plans

Product release
schedule

Products, features to be
added or abandoned

Company strategy

Code quality

Maintainability

Bug history

Stability

Staff knowledge

19

Occurrence matrices: a data structure to store detailed variability information

Matrix construction algorithm

Scalable: works for any number of variants

Generic: supports any element types

Flexible: equivalence relations enable customized definitions of similarity

Bar diagrams: visualization technique for variability information

Subset calculations: on-demand retrieval of variant intersections

Generalized framework for analysis of cloned systems

Summary

20

Further work

Attach a data source more advanced than diff
Clone detection results
Model-based comparison

Define further analyses on the rich data set available
E.g. variability metrics: granularity, # different configurations needed, …

Try to obtain more semantic-level results
Mapping features to code, traceability, …

Perform (publishable) case studies

21

Thank you!

Discussion…

