innovationszentrum
applied system
modeling

[= st ZZ Fraunhofer

\

Analyzing similarity of multiple cloned software systems

Slawomir Duszynski

slawomir.duszynski@iese.fraunhofer.de
Fraunhofer IESE

Kaiserslautern, Germany

November 28, 2011
The 16th CREST Open Workshop

UCL London

Motivation for Multi-System Analysis

» The need for systematic software reuse is often recognized only after
development of a group of similar software systems
= Common practice: clone and adapt one of existing variants, no reuse mechanisms
» “Software mitosis” (Faust 2003)
» Variants are maintained independently from each other
» Further variants emerge in the same way

» Examples from the industry

= 4 cloned variants, ca. 1.5 MLOC each
= 14 cloned variants, ca. 200 KLOC each

= With a growing number of variants,
maintenance becomes difficult

= Redundant maintenance and QA effort

[D. Faust, C. Verhoef: Software Product Line Migration and Deployment. 2003] —

[D. Beuche: Transforming Legacy Systems into Software Product Lines. SPLC 2010] I E Tewsceivesms =7 Fraunhofer

2

\

Motivation for Multi-System Analysis

» Having many similar variants, the company has two options:
= 1: Develop a new PL from scratch — costly, loss of past investment D
= 2: Migrate the existing products — difficult, and costly too [? x‘
= Typical migration problems l D
= Variability in the existing code is not known
= Code-level variability might differ from feature-level variability j X] j X]
(Yoshimura 2006a)
= High risk of incorrect reuse decisions l l ' D

(Garlan 1995; Kolb 2006)

» Research problem: detailed information about the code variability is needed
= variability needs to be recovered and understood
= difficult for large systems and many variants

* [K. Yoshimura, D. Ganesan, D. Muthig: Assessing Merge Potential of Existing Engine
Control Systems into a Product Line. SEAS 2006]

“the portion of functional commonality among two products is about 60-75%; - -
their implementations, however, share as little as around 30% of code” I = Tecuscue Unnessir Z Fraunhofer

3

\

We need an analysis technique that:

» Provides both abstract and detailed information
= Available for any part of the code
= Available for any variant or variant intersection

= |s scalable
» High number of LOC
» High number of variants
= Suitable abstraction needed (providing just a flat list of similarities is not scalable!)

= |s specifically targeted at variants, not versions .W

. . . . L u u time
] VerS|onS for’m a t|me_ordered ||St Version X Version X + 1 Version X + 2 Version X + 3 \f’e'simx—4/
» |t is enough to analyze n-1 pairs Variant Variant
. . . UK st——m France
» Variants exist in paraIIeI and cannot be ordered

= Analysis of =5~ palrs needed
= Result cannot depend on any variant ordering

Variant

Variant
Italy

Spain

» [IESE context] Is understandable to practitioners

Variant
Germany

[] |
[= sssvmsw ZZ Fraunhofer

4

Existing Approaches

B Similarity metrics calculated on the whole systems (Yamamoto2005)

B Only high-level information: it is known that there are differences, but it is not known
where they are

B Clone detection and manual result analysis (Yoshimura2006b)

B No scalability (lots of manual work, for just 2 variants)

B Clone detection and further result processing (Mende2008)

B Unsuitable result presentation

[T. Yamamoto, M. Matsushita, T. Kamiya, K. Inoue: Measuring similarity of large software
systems based on source code correspondence. 2005]

[K. Yoshimura, D. Ganesan, and D. Muthig: Defining a strategy to introduce a software
product line using existing embedded systems. EMSOFT 2006]

[T. Mende, R. Koschke: Supporting the Grow-and-Prune Model in Software Product Lines
Evolution Using Clone Detection. 2008]

)
\

[: st ZZ Fraunhofer
5

Existing Approaches

Information on Any Variant Intersection: Not Available

Card(A) = 100
Card(B) = 120
Card(C) = 150

>

7

Card(AnB) = 60

Card(AnC) = 60
Card(BNC) = 60

/ A B
C
PFT
FW | Fwt | P | R || PP P P!
5 T 3 1 1 1 8
FW (0%) | (0%) | (0%) | (0%) || (1%) || (0%) || (0%)
5 11 175 | 173 28 69 97
PF! (0%) (0%) | (8%) | (8%) || (%) || (3%) || (4%)
1 11 - 11 15 17 20
p FW! || (0%) || (3%) (3%) || (4%) || (%) || (8%)
3 162 - 162 11 24 30
e P} (0%) || (32%) (32%) || (2%) || (4%) || (5%)
1 156 i 175 2 28 38
v Pi (0%) || (16%) | (0%) | (15%) (0%) || (2%))| (3%)
11 41 16 23 5 20 I8
PF? (%) || @% | 0% | @%) | (0% (1%) || (1%)
4 57 17 21 26 15 175
P 0%) || 9% | @%) | 3%) | (%) || 2%) (30%)
9 80 27 28 30 13][185
P 0%) || W% | 0% | 0% | 2% || 0%) || (9%)

Result presentation in (Mende2008)

NED

C
EPair-wise result presentation

B Problem: incomplete information

B Example 1: Two different situations
(above) cannot be distinguished as they
provide the same pair-wise result

B Example 2: impossible to answer
questions such as “where is the core of
my potential product line?”

B Problem: complex result
® O(n?) variant pairs!

\

[: st ZZ Fraunhofer

6

Variant Analysis

Example Situation

= Consider three source code files A, B and C
» The task: recognize and characterize the commonalities and variabilities
= A human could use the diff tool to understand the differences

A B B C C A
1 £ |1 1 = |1 1 # |1
2 = |2 2 = |2 2 = |2
3 = |3 3 = |3 3 = |3
- +[a 4 + |4 4 + -
4 = 5 5 + - — 4+ |4
5 = |6 6 + - - + 5
6 + — + |5 5 = 6
7 + - + |7
8 = |7 7 = |6 6 = |8
9 = |8 : = |7 7 = o

= Practical problems in a product line context:

= Scalability problem: for n systems there are n(n-1)/2 pairs. Hard to understand for a
human (e.g. n=6 —> 15 different pairs to be related to each other)

= Comparison delivers pair-wise results such as “same” and “different”: but for the
product line, we want to know which lines are core and which are unique

[] |
[= sssvmsw ZZ Fraunhofer
7

Variant Analysis

Occurrence Matrices

= For each variant, list its elements in a matrix
= Add union matrix to represent the total analyzed code

= Fill the matrix

= Rows: variant elements

» Columns: all the existing variants; additionally: number of variants where the element

Ooccurs

= Cells: occurrence of the elements in the variants (1: occurrence, 0: no occurrence)

>

Sum

=

Sum

Sum

[\
z

||| B2 ra|—

—| === —=|| >

ol el Ll e el el e [@]

(951981 [51 P (V1 (3%
>
th

OO AN W) R —

—| === | =~

e Ll b= =l = B B B ()

[UF1 [9%1 [N [N6 P51 [9%1 (381 IS =1

== = = == =] —[>
i e = = o o o o £ [e =

..o_oo_.—c('j

\O| Co| | | | = | W B —
G| G = | B 1| B2 | | L] —

O =|=| = | = ||| —=| —=|—| —| |z
o =] el el e =1 et = =1 o]] [

o|o|o|—|—|—|—=|—|—=|—|—|—|>
e L 501 £75] L9ST) 061 861 | 61 LFS] (98]

= Redefine the line status to make it appropriate for product lines

» Not “same” and “different”, but “core” (Sum=n), “shared

[]
I m TECHNISCHE UNIVERSITAT
m KAISERSLAUTERN

, ‘unique” (Sum=1)

\

~ Fraunhofer

8

Variant Analysis
n-ary Diff Results

» [nstead of a group of diff-ed pairs...

([S

Helono
e o] —
I

I+ +

+ 1

n

I
uom-.:O\u-LImM._

6 6
7 7

o] % s W
=

= ... the result is a n-ary diff performed on all the involved variants:

C B C
1 Shared 1 Shared Shared
2 Core 2 Core Core
3 Core 3 Core

2 Core
3 Core

[Tl S

([N
W N =

Core

L |

|
+

4 Shared 5 Shared

[

+
+

+
5 Shared 6 Shared +
= |6 Shared + - - Shared
="+ v - -
6 Core = 8 Core = 7 Core = Core
7 Core = |9 Core = 8 Core = |7 Core

» Using the same principle, a comparison for any number of variants is possible

\\

[: st ZZ Fraunhofer
9

Variant Analysis — Visualization

Venn Diagrams: Not the way to go...

» Venn diagrams: very useful for
small number of sets

A B

n=>2
= Harder to understand

Number of
diagram areas = 2"

[] | _—
[= st ZZ Fraunhofer

10

Variant Analysis

Visualization: Bar Diagrams

» Bar diagrams are a way to visualize occurrence matrices
= One bar created for each occurrence matrix (in total: n+1 bars)

C A B C
1 Shared # 1 Unique # |1 Shared = 1 Shared
2 Core = 2 Core = 2 Core = 2 Core
3 Core = 3 Core = |3 Core = 3 Core
4 Unique — + 4 Unique # 4 Unique
Shared = |5 Shared +
Shared = |6 Shared + A 4 3 2 ?
Shared + - - Shared B 4 3 1 ‘ 8
Core = |7 Core = Core
Core = 8 Core = 7 Core ALL[4 - e 12

» Size of the bar = number of elements in the matrix
» Bar parts symbolize the core, shared and unique elements in the variants
» Sizes of the particular parts reflected in the diagram

\\

[= st ZZ Fraunhofer
11

Variant Analysis

Information on Any Variant Intersection Available

>
v}
>

/) EAAY
& @

C C
A 60 40 {100 A 20 80 100
B 60 60 120 B 20 80 20/ 120
C 60 90 150 C 20 80 50 | 150
ALL 60 190 250 ALL |20 120 70 210

M The information provided by Variant Analysis is complete
B Two example situations easily distinguishable
B Any set intersection can be obtained using subset calculations

M It is know how much elements fulfill a criterion and which elements they are

B Information can be easily presented even for a high number of variants

)
\

[: st ZZ Fraunhofer
12

Variant Analysis

Subset Calculations

» Sometimes a specific subset of the analyzed system group is interesting, e.g.:
= All elements shared by at least k systems
» Elements common for a given system and other systems
» Subsets suchasAn"Bn-"CnD

A in >~ o B
A[I5 20 24 [i0]69 / 10//”‘\\8 \
Bl 15 19 24 866 //.f%/-;,..\\\ //,,.__A_ﬂ__\\\
R 27 B8 (5014 7~ 2 (13
D 15 9]7 13 |54 .I“ ",1 \\ // // \,. J,
2 P N7))
\ \ /]
c~? /b

| Shared by 3 | | Shared by 2 | S

» Subset elements can be found by evaluating the element occurrences in the matrix
» Visualization on a bar diagram: display relevant bar parts and associated numbers
» Visualization in text editor: highlight relevant text lines in the text editor

[] |
[= sssvmsw ZZ Fraunhofer
13

Variant Analysis

Scalable Result Abstraction and Navigation

» Variant Analysis integrated into Fraunhofer SAVE tool (Eclipse plug-in)

= Top-down result exploration possible using structural architectural views

= Detect interesting
areas on the high

level structure ;E'Sr_c
» Go to details only o
where relevant
results exist Oio . Iill:l:lreIEI
— — "] + +
= Example: . : =
the folders “core”
vs. “data” = buffer.c S msg.c = funct.c
i i -] E & -5 H -] 5 & [Jdata
in the figure e
4 117 4] 3 a5
4 236
i

[] |
[= sssvmsw ZZ Fraunhofer
14

Variant Analysis

Industrial Application

» Good scalability and performance

» Four 1.5 MLOC variants (implemented in C++)
analyzed in 7 minutes

A 663618 9 356371 [1122110
B 663618 581592 HisB| 1444100
C 663618 i 715238 "1 1526155
D 663618 % 292059 [wse] 1184015
ALL | 663618 e 972630 524926 2211748
| Shared by 3 | | Shared by 2 |
» Subset calculations on all rows
time range from 312ms to 328ms
A 663618 Tiss]237799 il 1122110
B 663618 s 561999 |1755| 1444100
C 663618 22 15w | 561999 1526155
D 663618 &) 237799 | w2 | 1184015
ALL | 663618 o 172832 | 799798 ! 524926 2211748

| Shared by 3 | Shared by 2 [(An-Bn~CND) v (~ANBNCN-D) |

[: st ZZ Fraunhofer
15

Diff is just an example data source!

Automated analysis

System Structure Model

System

Variability Model

S —

VA Model

+name

1
*

«abstract»
System Element| 1

analysisinfo

]

N

Mapping Information

Subsystem Compilation Unit

uniqueElementlD

Occurrence Matrix

]

Code Element

]

Matrix Row

+locationInCode

_ - Presentation
Input preparation
Result
Class xyz { Fact D _ interpretation
o extraction Mapping Comparison
ass xyz { System structure
- model i > Subset
. (union, x 1) calculations
System structure D Variability model: .
del . Presentation
System source code mode o6] occurrence matrices
(x N) (xN) (x N+1) :>
Code
T modification
Variability model:
mapping informgtion Model update
(x N, + 1 for union) request

B The Variant Analysis model is generic
» Different system representations possible

B Analysis phases can be adapted to specific needs
» Different similarity detection algorithms possible

+uniqueRowID

\

P

TeCHNISCHE UNIVERSITAT
KAISERSLAUTERN

~ Fraunhofer
16

, E

—_— e — — e — — — — — — U —

Generalization

Equivalence Relation and Unambiguous Assignment

= Bar diagrams and occurrence matrices can be applied to analyze and visualize any kind
of variability

= Code, non-code artifacts, model elements, features, ...

= The prerequisite for using the technique is a “correct” filling of the occurrence matrix

= Equivalence relation across the variants’ elements needed

= Reflexive Vxe S: x rel x == true
= Symmetric Vx,yeS: xrely=yrelx
» Transitive VXx,y,zeS: Xrelyaryrelz—= xrelz

= Unambiguous assignment of equivalent elements across variants

= Necessary if more than one element from variant A is equivalent to a given
element of variant B

[S. Duszynski: Visualizing and Analyzing Software Variability with Bar Diagrams and
Occurrence Matrices. SPLC 2010]

[S. Duszynski, J. Knodel, M. Becker: Analyzing the Source Code of Multiple Software
Variants for Reuse Potential. WCRE201 1] I E TecHNISCHE UNIVERSITAT % FraunhOfer

KAISERSLAUTERN

)
\

17

Limitations

EmTypical situation in

reverse engineering: Syntactic Semantic
similarit similarit
M Use syntax-level ,f,_lﬂﬂ_ ——— Y
approaches... e S
. . // Accidental
M... trying to derive /" similarity but Same
. . Vs e.g. different functionality,
meaningful (semantic- gy different code
/ (e.g. created Y

level) results /

{ Similarity dug to Same ,. prsgrz:;rer] 5'||
HmVariant Analysis retrieves i functionality, | |
. . . . l‘. anguage similar code | |
just the syntactic similarity | constructs | same /
\ ' functionality, /
Very small g different
\\\ similar code programming
mIt also depends on the N e language
tructure similarity: = —
S ; ~
\\\-_\-"‘“—\——_,___ — — _____F__H____-"'
comparing non-cloned
. Appears in the . . Interesting but
system does not deliver results but is not Both Interesting hard to recover
interesting reSUItS interesting automatically

)
\

[: st ZZ Fraunhofer
18

Using the obtained information

Relation to scoping and other information sources

L

\w — " ™ —
Scopﬁng 'Reverse engineering variabilitﬁ
l Domalm M Sugﬁgﬁ!@grltles and dltigrences
m Reqmremeﬁts lStructu?es e
] Features " W Fine: gralgggglmga;a —_—TN
e D Q.
Future plans Code quallty
H Product release | m Maintainability
sc:;dule B Bug history

m%%%h
LY
%

i
i
I - TecHNISCHE UNIVERSITAT /
m KAISERSLAUTERN ~ Fraunhofer

e 19

~ wl»Produus, featui‘es to be - Stablllty"ﬁ wwwwwww

i
&

&
g

i
|
g

\
/_
|

\

Summary

B Occurrence matrices: a data structure to store detailed variability informati‘on

B Matrix construction algorithm
B Scalable: works for any number of variants

B Generic: supports any element types

A

B

Al B C | Sum

A B | C |Sum

A B C | Sum

2% Y [EN PO [P P

]
3
]]
3
T

o] s s = s s 1)

=) O B 1SN [N PSS E9 P B

B Flexible: equivalence relations enable customized definitions of similarity

M Bar diagrams: visualization technique for variability information

B Subset calculations: on-demand retrieval of variant intersections

B Generalized framework for analysis of cloned systems

Do
ElE]

478

data
)

C A B C
1 Shared # [[DUfiqueny] + [1_Shared = [I_Shared
2 Cor = [2 Coe | = [2 Core = [2_ Core
3 Cor = |3 Core = |3 Core = |3 Core
4 Unique + - - +[4 Unique # |4 Unique
— + |4 Shared = |5 Shared + -
+ |5 Shared = |6 Shared + - A 4 3 2 9
T O T b e W
-7+ povme| + - C 7
6 Core = [8 Core = |7 Core = |6 Core
[7_ Core | = [9 Core = [8 Core | [7_Core] ALL | 4 4 4 |1
Automated analysis
" Presentation
Input preparation
Fact @ Result
ac t tati
i Mapping Comparison nterpretation
System structure
model Subset
(union, x 1) bR calculations
System structure Variability model: "
code model occurrence matrices | resentation

(xN)

Var{ability model:
mapping information
(x N, + 1 for union)

(x N+1)

Code
— modification

Model update
request

20

Further work

= Attach a data source more advanced than diff
= Clone detection results
» Model-based comparison

» Define further analyses on the rich data set available
» E.g. variability metrics: granularity, # different configurations needed, ...

* Try to obtain more semantic-level results
» Mapping features to code, traceability, ...

» Perform (publishable) case studies

i
[] |
[= sssvmsw ZZ Fraunhofer
21

Thank you!

A B C All
A[B [C [Sum B [C |Sum B | C [Sum B Sum
1 1 2 I 2 Al
2 2 3 2 3 2
3 3 3 3 3 3
4 2 4 1 4 4 1
5 2 5 2 5 5 2
[] 2 6 [] A6 1
7 1 1 7 AT 1
§ 3 8 A3 3
9 3 AY 3
Bl 2
B4 |
4 1
[src
=l
I .
4 1104
Oio care
= &
[—]
4 200
87 buifer.c | [EAmsg.c [E funct.c
EEE REEL EEL
[—— | I [— |
4 117| 4 88 3 85
|

U]

Discussion...

Automated analysis

Input preparation
Fact
lass xyz { " T
Class xyz{ extraction - pping
> LJ :F‘/
— E
’ ooJ
System structure
System source code model
(xN) (xN)

A 4 3 9
B) 3 8
C 4 2 7
: AL TG I
- Presentation
:F‘/\
Result
L — &) C b interpretation
System structure ompans\cm Cod] jl
model I:‘// Subset
(union, x 1) L ﬁ % calculations
€ Varia’l;mt'yin;;del: "
N Presentation
> occurrence matrices
L] (x N+1) 1:"/\
L) Code
Variability model: medification
mapping information Model update
(x N, + 1 for union) request

/

[]
m TECHNISCHE UNIVERSITAT
m KAISERSLAUTERN

\\

74

Fraunhofer

