
Using Information Theory
to Guide Fault Localisation

Shin Yoo (joint work with Mark Harman & David Clark)
CREST, UCL

FLINT: Fault Localisation using Information Theory
Shin Yoo, Mark Harman and David Clark

RN/11/09, Department of Computer Science, University College London, 2011

Outline

Shannon’s Entropy

How we make our (short?) prediction

Empirical results

What is entropy?

Entropy = amount of uncertainty regarding a
random variable

Information = change in entropy (i.e. more
knowledge is less uncertainty)

What is entropy?

Let X be one of {x1, x2, ..., xn}

If X is very likely to be x4, i.e. P(X=x4) ≈ 1,
there is little uncertainty

Similarly, if X is very likely not to be x3, i.e.
P(X=x3) ≈ 0, there is little uncertainty

If X can be any of {x1, x2, ..., xn}, there is
maximum uncertainty

Mathematical Properties

Continuity: so that a small change in probability
results in a small change in entropy.

Monotonicity: so that if all n cases are equally
likely, H monotonically increases as n increases.

Additivity: so that if a choice can be broken
down to two successive choice, the original H
can be expressed in a weighted sum.

A mathematical theory of communication, Shannon, 1948

H(X) = �
nX

i=1

p(xi) · log p(xi)

p(xi)

-p(xi)log p(xi)

To reduce entropy of X is to drive p(xi)
to either 0 or 1 for each xi. The amount

of reduction is our information gain.

0 1

1/n

Test-based Fault Localisation

Given results of tests which include failing
ones, how can we know where the faulty
statement(s) lies in the program?

FLINT: Fault Localisation
using Information

Theory

Probabilistic Model of Fault Locality

Program with m statements, S={s0, s1,... , sm-1}

Test suite with n tests, T= {t0, t1,... , tn-1}

S contains a single fault

Random variable X represents the locality

Probabilistic Model of Fault Locality

At the beginning of fault localisation:

P(X) = 1 / m : we suspect everything
equally

H(X) = log(m) (the maximum)

Probabilistic Model of Fault Locality

At the end of fault localisation, “ideally”:

P(X=sj) = 1

P(X∈S - {sj}) = 0

H(X) = 0 (i.e. no uncertainty)

A quantitative view

Fault localisation is all about making H(X)
zero, or as little as possible

H(X) measures your progress

We can measure how much each test
contributes to localisation, provided that we
build a probability distribution model of
locality around tests

Localisation Metrics

Also called “suspiciousness”

Relative measure of how likely each
statement is to contain the fault

Often calculated from the execution traces
of tests

Tarantula, Ochiai, Jaccard, etc

Tarantula metric

Tarantula metric �(s) =

fail(s)
totalfail

pass(s)
totalpass

+ fail(s)
totalfail

pass(s): # of passing tests that cover s

fail(s): # of failing tests that cover s

1 if test fails whenever s is covered; 0 if test
passes whenever s is covered

Probability Distribution
from Tarantula

After executing up to test i, we take the
normalised suspiciousness as the probability
of locality

PTi(B(sj)) =
�(sj |Ti)Pm
j=1 �(sj |Ti)

Entropy from Tarantula

Entropy of locality after executing up to ti

Suppose ti failed and we want to locate the
fault: which test should we execute first?

HTi(S) = �
mX

j=1

PTi(B(sj)) · logPTi(B(sj))

FLP

Fault Localisation Prioritisation: prioritise
tests according to the amount of information
they reveal

:-)

“But how do you know how much information
will be revealed BEFORE executing a test?”

:-(

Predictive Modelling of
Suspiciousness

For each statement sj, it either contains fault or not

For each unexecuted test ti, it either passes or fail

PTi+1(B(sj)|F(ti+1)) and PTi+1(B(sj)|~F(ti+1)) are
approximated with Tarantula

PTi+1(B(sj)) =PTi+1(B(sj)|F (ti+1)) · �+
PTi+1(B(sj)|¬F (ti+1)) · (1� �)

� = PTi+1(F (ti+1)) ⇡
TFi

TPi + TFi

Predictive Modelling of
Suspiciousness

Once we can predict the probability of fault
locality for each test, we can also predict
the entropy

Once we predict the entropy, we can predict
which test will yield the largest information
gain

Total Information Retain

Yet the total information yielded by a test
suite retain (that is, at the end of testing,
the information we get out of the activity
remains the same, whichever ordering of
tests we take).

So why bother?

It’s the ordering that matters!

Empirical Study

92 faults from 5 consecutive versions of flex,
grep, gzip and sed

Compared to random and coverage-based
prioritisation (normal TCP, not FLP)

Effectiveness Measure

Expense = (rank of faulty statement) / m *
100

Measures how many statements the tester
has to consider, following the suspiciousness
ranking, until encountering the faulty one

grep, v3, F_KP_3

0.
5

1.
0

Su
sp

ic
io

us
ne

ss

FLINT
TCP
Random

0 20 40 60 80 100

Percentage of Executed Tests

−2
0

−1
0

0
10

Ex
pe

ns
e

R
ed

uc
tio

n

Exp. Reduction FLINT
Exp. Reduction Greedy

flex, v1, F_HD_1

0.
5

1.
0

Su
sp

ic
io

us
ne

ss

FLINT
TCP
Random

0 20 40 60 80 100

Percentage of Executed Tests

−5
0

5
10

15
20

Ex
pe

ns
e

R
ed

uc
tio

n

Exp. Reduction FLINT
Exp. Reduction Greedy

flex, v5, F_JR_2

1.
0

Su
sp

ic
io

us
ne

ss

FLINT
TCP
Random

0 20 40 60 80 100

Percentage of Executed Tests

−1
5

−5
0

5
10

Ex
pe

ns
e

R
ed

uc
tio

n

Exp. Reduction FLINT
Exp. Reduction Greedy

gzip, v5, F_TW_1

0.
5

1.
0

Su
sp

ic
io

us
ne

ss

FLINT
TCP
Random

0 20 40 60 80 100

Percentage of Executed Tests

−1
0

−5
0

5
10

Ex
pe

ns
e

R
ed

uc
tio

n

Exp. Reduction FLINT
Exp. Reduction Greedy

PS PN EQ NN NS

ET < ER 70.65% 1.09% 0% 0% 28.26%

EF < ER 73.91% 2.17% 0% 0% 23.91%

EF < ET 46.74% 2.17% 10.87% 6.52% 33.70%

Statistical Comparisons

When coverage is
unknown

Remember we said “PTi+1(B(sj)|F(ti+1)) and PTi+1(B(sj)|
~F(ti+1)) are approximated with Tarantula”

That is only possible if we know which statement ti
+1 covers

Which is not known when you run your test for a
new version!

When coverage is
unknown

Coverage from
version n

We use coverage
from previous
version, i.e.
localise the fault
w.r.t. the
previous version

We only take
actual pass/fail
result from
current version

Pass/fail from
version n + 1

Entropy
lookahead

“Nonsense!”

No, it is possible because our approach only
guides the probability distribution: it does
not concern any specific statement, how
many statements there are, etc

grep, v3, F_KP_3

0.
5

1.
0

Su
sp

ic
io

us
ne

ss

FLINT
TCP
Random

0 20 40 60 80 100

Percentage of Executed Tests

−2
0

−1
0

0
10

Ex
pe

ns
e

R
ed

uc
tio

n

Exp. Reduction FLINT
Exp. Reduction Greedy

flex, v5, F_JR_2

1.
0

Su
sp

ic
io

us
ne

ss

FLINT
TCP
Random

0 20 40 60 80 100

Percentage of Executed Tests

−1
5

−5
0

5
10

Ex
pe

ns
e

R
ed

uc
tio

n

Exp. Reduction FLINT
Exp. Reduction Greedy

flex, v5, F_AA_4

1.
0

Su
sp

ic
io

us
ne

ss

FLINT
TCP
Random

0 20 40 60 80 100

Percentage of Executed Tests

−2
0

0
10

20
30

40
Ex

pe
ns

e
R

ed
uc

tio
n

Exp. Reduction FLINT
Exp. Reduction Greedy

sed, v2, F_AG_19

1.
0

Su
sp

ic
io

us
ne

ss

FLINT
TCP
Random

0 20 40 60 80 100

Percentage of Executed Tests

−4
0

−2
0

0
10

Ex
pe

ns
e

R
ed

uc
tio

n

Exp. Reduction FLINT
Exp. Reduction Greedy

Use Case

You’ve already run all tests and detected a failure,
you want to check results to locate the fault.
Which “checking” order do you follow?

Use FLINT with actual coverage data

You are in the middle of testing, a failure has
been detected, you want to prioritise the
remaining tests to locate the fault asap. Which
order do you follow?

Use FLINT with previous coverage data

“What about multiple faults?”

Again, we benefit from the generic nature of
entropy: it never concerns any specific faults

It is not unrealistic to assume that the
tester can distinguish different faults: filter
pass/fail results accordingly into FLINT

“But Tarantula is weak”

FLINT only requires a probability distribution:
we evaluated it with Tarantula because it is
intuitive and easy to calculate

More sophisticated fault localisation metric
will only improve FLINT

Many opportunities for short-term
prediction/speculation

Conclusion

Shannon’s entropy is not only beautiful but
actually useful for fault localisation

It is very universal and powerful at the
same time and we encourage you to consider
it to frame your own research agenda

