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@ Empirical results



What Is enfropy?

@ Entropy = amount of uncertainty regarding a
random variable

@ Information = change in entropy (i.e. more
knowledge is less uncertainty)



What Is entropy?

@ Let X be one of {xi, X2, ..., Xn}

o If X is very likely to be x4, i.e. P(X=x4) = 1,
there is little uncertainty

@ Similarly, if X is very likely not to be x3, i.e.
P(X=x3) = O, there is little uncertainty

@ If X can be any of {xi, X2, ..., Xn$, there is
maximum uncertainty



Mathematical Properties

@ Conftinuity: so that a small change in probability
results in a small change in entropy.

@ Monotonicity: so that if all n cases are equally
likely, H monotonically increases as n increases.

@ Additivity: so that if a choice can be broken
down to two successive choice, the original H
can be expressed in a weighted sum.

A mathematical theory of communication, Shannon, 1948
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To reduce entropy of X is to drive p(xi)
to either O or 1 for each x;. The amount
of reduction is our information gain.



Test-based Fault Localisation

@ Given results of tests which include failing
ones, how can we know where the faulty
statement(s) lies in the program?



FLINT: Fault Localisation
using Information
Theory



Probabilistic Model of Fault Locality

@ Program with m statements, S={so, Si,... , Sm-1}
@ Test suite with n tests, T= {to, ti,... , tn-1}
@ S contains a single fault

® Random variable X represents the locality



Probabilistic Model of Fault Locality

@ At the beginning of fault localisation:

@ P(X) =1 / m: we suspect everything
equally

@ H(X) = log(m) (the maximum)



Probabilistic Model of Fault Locality

@ At the end of fault localisation, “ideally”:
o P(X=sj) =1
@ P(XeS - §{s;}) = O

@ H(X) = O (i.e. no uncertainty)



A quantitative view

@ Fault localisation is all about making H(X)
zero, or as little as possible

@ H(X) measures your progress

@ We can measure how much each tfest
contributes fo localisation, provided that we
build a probability distribution model of
locality around tests



Localisation Metrics

@ Also called “suspiciousness”

@ Relative measure of how likely each
statement is to contain the fault

® Often calculated from the execution traces
of tests

® Tarantula, Ochiai, Jaccard, etc



Tarantula metric

fazl(s)
total fazl

pass(s) , fail(s)
totalpass ' totalfail

Tarantula metric 7(s) =

@ pass(s): # of passing tests that cover s
o fail(s): # of failing tests that cover s

@ 1 if test fails whenever s is covered; O if test
passes whenever s is covered



Probability Distribution
from Tarantula

7(s;]73)

i alliahs oy

@ After executing up to test i, we take the
normalised suspiciousness as the probability
of locality



Entropy from Tarantula

ZPT ) - log P, (B(s;))

@ Entropy of locality after executing up fo t;

@ Suppose t; failed and we want to locate the
fault: which fest should we execute first?



FLP

@ Fault Localisation Prioritisation: prioritise
tests according to the amount of information
they reveal

:-)



"But how do you know how much information
will be revealed BEFORE executing a test?”

-~



Predictive Modelling of
Suspiciousness

PT@+1 (B(SJ)) :PT1+1 (B(S]) F(t’i-l-l)) Ol
PT@+1 (B(SJ) _'F(t”H-l)) ' (1 s Ck)
1'F;
TP, + TF;

S PT@'—|—1 (F(ti-l-l)) s

@ For each statement s;j, it either contains fault or not

@ For each unexecuted tfest tj, it either passes or fail

o pTi+1(B(5j)|F(1'i+l)) and PTi+1(B(5j)I~F(+i+1)) are
approximated with Tarantula



Predictive Modelling of
Suspiciousness

@ Once we can predict the probability of fault
locality for each test, we can also predict
the entropy

@ Once we predict the entropy, we can predict
which test will yield the largest information
gain



Total Information Retain

@ Yet the total information yielded by a test
suite retain (that is, at the end of testing,
the information we get out of the activity

remains the same, whichever ordering of
tests we take).

@ So why bother?

@ Its the ordering that matters!



Empirical Stuay

@ 92 faults from 5 consecutive versions of flex,
grep, gzip and sed

@ Compared o random and coverage-based
prioritisation (normal TCP, not FLP)



Effectiveness Measure

@ Expense = (rank of faulty statement) / m *
100

@ Measures how many statements the tester
has to consider, following the suspiciousness
ranking, until encountering the faulty one
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Statistical Comparisons

PS PN EQ NN NS
Etr < Er | 70.65% | 1.09% 0% 0% 28.26%
Er < Er | 7391% | 2.177% 0% 0% 2391%
2.17% 10.87% 6.52% 33.70%

AN A




When coverage IS
unknown

@ Remember we said "Pri.i(B(s)IF(tis1)) and Prisi(B(s))
~F(ti.1)) are approximated with Tarantula”

@ That is only possible if we know which statement ti
+1 covers

@ Which is not known when you run your test for a
new version!



When coverage IS
unknown

,, @ We use coverage
Pass/fail from Frorn. Pre.Vious
versionn +1 4 version, l.e.
localise the fault
w.r.t. the
previous version

{ Coverage from
| version n

@ We only take
actual pass/fail
result from
current version

Entropy
lookahead




“"Nonsense!”

@ No, it Is possible because our approach only
guides the probability distribution: it does
not concern any specific statement, how
many statements there are, efc
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Use Case

@ You've already run all tests and detected a failure,
you want to check results to locate the fault.
Which “checking” order do you follow?

@ Use FLINT with actual coverage data

@ You are in the middle of testing, a failure has
been detfected, you want to prioritise the
remaining tests to locate the fault asap. Which
order do you follow?

@ Use FLINT with previous coverage data



"What about multiple faults?”

@ Again, we benefit from the generic nature of
entropy: it never concerns any specific faults

@ It is not unrealistic to assume that the
tester can distinguish different faults: filter
pass/fail results accordingly into FLINT



“But Tarantula is weak”

@ FLINT only requires a probability distribution:
we evaluated it with Tarantula because it is
intuitive and easy to calculate

@ More sophisticated fault localisation metric
will only improve FLINT

@ Many opportunities for short-term
prediction/speculation



Conclusion

@ Shannons entropy is not only beautiful but
actually useful for fault localisation

@ It is very universal and powerful at the
same time and we encourage you to consider
it fo frame your own research agenda



