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What is entropy?

Entropy = amount of uncertainty regarding a 
random variable

Information = change in entropy (i.e. more 
knowledge is less uncertainty)



What is entropy?

Let X be one of {x1, x2, ..., xn}

If X is very likely to be x4, i.e. P(X=x4) ≈ 1, 
there is little uncertainty

Similarly, if X is very likely not to be x3, i.e. 
P(X=x3) ≈ 0, there is little uncertainty

If X can be any of {x1, x2, ..., xn}, there is 
maximum uncertainty



Mathematical Properties

Continuity: so that a small change in probability 
results in a small change in entropy.

Monotonicity: so that if all n cases are equally 
likely, H monotonically increases as n increases.

Additivity: so that if a choice can be broken 
down to two successive choice, the original H 
can be expressed in a weighted sum.

A mathematical theory of communication, Shannon, 1948



H(X) = �
nX

i=1

p(xi) · log p(xi)

p(xi)

-p(xi)log p(xi)

To reduce entropy of X is to drive p(xi)
to either 0 or 1 for each xi. The amount

of reduction is our information gain.

0 1

1/n



Test-based Fault Localisation

Given results of tests which include failing 
ones, how can we know where the faulty 
statement(s) lies in the program?
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Probabilistic Model of Fault Locality

Program with m statements, S={s0, s1,... , sm-1}

Test suite with n tests, T= {t0, t1,... , tn-1}

S contains a single fault

Random variable X represents the locality



Probabilistic Model of Fault Locality

At the beginning of fault localisation:

P(X) = 1 / m : we suspect everything 
equally

H(X) = log(m) (the maximum)



Probabilistic Model of Fault Locality

At the end of fault localisation, “ideally”:

P(X=sj) = 1

P(X∈S - {sj}) = 0

H(X) = 0 (i.e. no uncertainty)



A quantitative view

Fault localisation is all about making H(X) 
zero, or as little as possible

H(X) measures your progress

We can measure how much each test 
contributes to localisation, provided that we 
build a probability distribution model of 
locality around tests



Localisation Metrics

Also called “suspiciousness”

Relative measure of how likely each 
statement is to contain the fault

Often calculated from the execution traces 
of tests

Tarantula, Ochiai, Jaccard, etc



Tarantula metric

Tarantula metric �(s) =

fail(s)
totalfail

pass(s)
totalpass

+ fail(s)
totalfail

pass(s): # of passing tests that cover s

fail(s): # of failing tests that cover s

1 if test fails whenever s is covered; 0 if test 
passes whenever s is covered



Probability Distribution 
from Tarantula

After executing up to test i, we take the 
normalised suspiciousness as the probability 
of locality

PTi(B(sj)) =
�(sj |Ti)Pm
j=1 �(sj |Ti)



Entropy from Tarantula

Entropy of locality after executing up to ti

Suppose ti failed and we want to locate the 
fault: which test should we execute first?

HTi(S) = �
mX

j=1

PTi(B(sj)) · logPTi(B(sj))



FLP

Fault Localisation Prioritisation: prioritise 
tests according to the amount of information 
they reveal

:-)



“But how do you know how much information 
will be revealed BEFORE executing a test?”

:-(



Predictive Modelling of 
Suspiciousness

For each statement sj, it either contains fault or not

For each unexecuted test ti, it either passes or fail

PTi+1(B(sj)|F(ti+1)) and PTi+1(B(sj)|~F(ti+1))  are 
approximated with Tarantula

PTi+1(B(sj)) =PTi+1(B(sj)|F (ti+1)) · �+
PTi+1(B(sj)|¬F (ti+1)) · (1� �)

� = PTi+1(F (ti+1)) ⇡
TFi

TPi + TFi



Predictive Modelling of 
Suspiciousness

Once we can predict the probability of fault 
locality for each test, we can also predict 
the entropy

Once we predict the entropy, we can predict 
which test will yield the largest information 
gain



Total Information Retain

Yet the total information yielded by a test 
suite retain (that is, at the end of testing, 
the information we get out of the activity 
remains the same, whichever ordering of 
tests we take).

So why bother?

It’s the ordering that matters!



Empirical Study

92 faults from 5 consecutive versions of flex, 
grep, gzip and sed

Compared to random and coverage-based 
prioritisation (normal TCP, not FLP)



Effectiveness Measure

Expense = (rank of faulty statement) / m * 
100

Measures how many statements the tester 
has to consider, following the suspiciousness 
ranking, until encountering the faulty one
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PS PN EQ NN NS

ET < ER 70.65% 1.09% 0% 0% 28.26%

EF < ER 73.91% 2.17% 0% 0% 23.91%

EF < ET 46.74% 2.17% 10.87% 6.52% 33.70%

Statistical Comparisons



When coverage is 
unknown

Remember we said “PTi+1(B(sj)|F(ti+1)) and PTi+1(B(sj)|
~F(ti+1))  are approximated with Tarantula”

That is only possible if we know which statement ti
+1 covers

Which is not known when you run your test for a 
new version!



When coverage is 
unknown

Coverage from 
version n

We use coverage 
from previous 
version, i.e. 
localise the fault 
w.r.t. the 
previous version

We only take 
actual pass/fail 
result from 
current version

Pass/fail from 
version n + 1

Entropy 
lookahead



“Nonsense!”

No, it is possible because our approach only 
guides the probability distribution: it does 
not concern any specific statement, how 
many statements there are, etc
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Use Case

You’ve already run all tests and detected a failure, 
you want to check results to locate the fault. 
Which “checking” order do you follow?

Use FLINT with actual coverage data

You are in the middle of testing, a failure has 
been detected, you want to prioritise the 
remaining tests to locate the fault asap. Which 
order do you follow?

Use FLINT with previous coverage data



“What about multiple faults?”

Again, we benefit from the generic nature of 
entropy: it never concerns any specific faults

It is not unrealistic to assume that the 
tester can distinguish different faults: filter 
pass/fail results accordingly into FLINT



“But Tarantula is weak”

FLINT only requires a probability distribution: 
we evaluated it with Tarantula because it is 
intuitive and easy to calculate

More sophisticated fault localisation metric 
will only improve FLINT

Many opportunities for short-term 
prediction/speculation



Conclusion

Shannon’s entropy is not only beautiful but 
actually useful for fault localisation

It is very universal and powerful at the 
same time and we encourage you to consider 
it to frame your own research agenda


