
© 2007 AT&T Knowledge Ventures. All rights reserved. AT&T
and the AT&T logo are trademarks of AT&T Knowledge Ventures.

Reflections and Perspectives on

Predictive Modeling in Industry

Tom Ostrand

AT&T Labs - Research

Crest Open Workshop

Oct 24-25, 2011

Overview

•Fault prediction at AT&T

•Fault prediction and SBSE

AT&T software production environment

• many large, long-lived (legacy) systems

• telecom applications, internal bookkeeping systems,
consumer & business customer-facing applications

• multi-(file, module) systems

• more or less regular release schedules (with exceptions)

• most programming in C, C++ or Java

• many other languages, including some special purpose
proprietary

Prediction Research Goals

• Develop prediction models that identify parts of
system that are most likely to be fault-prone in
future releases.

• Provide results to developers, testers &
managers, to use in

• code design & refactoring

• testing strategy & tactics

• resource allocation

• scheduling decisions

Prediction Research Goals

• Discover and apply the best possible model to predict
faulty files in next release

• Realize that different systems may have different best
models.

• Although the basic shape of the model may be similar
across systems, there may be individual adaptations
needed.

• Find a "good-enough" model to make predictions, apply it
to a wide variety of systems, make necessary adaptations,
evaluate each one, and present results to the consumers
(system developers and testers)

Fault Prediction Research at AT&T Labs

• 2002-03: Contacting development groups, collecting data,
looking for patterns, analyzing relations

• 2003-04: Building & evaluating first prediction models,
creating the Standard Model

• 2005-07: Applying models to more systems, evaluating
model variations

• 2007-09: Evaluating different modeling approaches, and
more model variations

• 2009: Construction of user-oriented tool

• 2010-11: Integrating finer-grained data into model

Systems we've studied

System Years
followed

Releases LOC in last
release

Files
in last
release

Average %
files with

faults

Average % of
faulty code

Inventory 4 years 17 538,000 1950 12% 36%

Provisioning 1 2 years 9 438,000 2271 1.3% 5.7%

Voice response 2.25
years

9 329,000 1926 10.1% 16.9%

Business
maintenance A

9+ years 35 442,000 668 4.8% 17.0%

Business
maintenance B

9+ years 35 383,700 1413 1.9% 13.7%

Business
maintenance C

7 years 27 327,400 584 4.8% 14.3%

Provisioning 2 4 years 16 945,000 3085 6.6% 22.2%

Utility 4.5 years 18 281,000 802 5.9% 25.7%

Inventory 2 4.5 years 18 2,115,000 6693 2.9% 18.5%

Prediction Results
Actual faults found in predicted top 20% of files

(average over period studied)
System Life

Span
Releases LOC in last

release
Files in

last
release

Average %
defects in files
predicted to be

most faulty

Inventory 4 years 17 538,000 1950 83%

Provisioning 1 2 years 9 438,000 2271 83%

Voice response 2.25
years

9 329,000 1926 75%

Business maintenance A 9+ years 35 442,000 668 83%

Business maintenance B 9+ years 35 383,700 1413 94%

Business maintenance C 7 years 27 327,400 584 76%

Provisioning 2 4 years 16 945,000 3085 87%

Utility 4.5 years 18 281,000 802 86.5%

Inventory 2 4.5 years 18 2,115,000 6693 92.5%

Observations

• Doing this kind of research takes a long time

• It’s crucial to establish good relations with the
people in the production groups

• Trust is important

• Look for individual(s) in the product group who
are enthusiastic about the technology

• There are many similarities between projects

• No two projects are the same

Difficulties

• Which data are reliable?

• Which change requests are bugs?

• What to do about unreliable data?

• Persuading projects to try the technology

• Persuading projects to adopt the technology

Which data are reliable?

• Change request data are collected both
automatically and from manual input

• Automatic collection is usually reliable

• system clock incorrect (DST)

• check-out/check-in a file without changing it can lead to
spurious change counts.

• Manual input

• Default values

• Careless choice

• Fields used for different purpose

• Deliberate misinformation

Which change requests are bugs?

• Techniques we have considered

• Category of the MR

• Role of the person filing the change request

• Project phase when the change request is filed

• Text analysis of natural lang description

• Problems

• Category field doesn't exist in the MR

• Category field values are misleading or unclear

• Fields are used differently by different projects

• Users choose wrong value or leave default for category

MR creation form

MR fields used by a project

Category Type

Action

Issue

Enhancement

Modification

Defect

Other

Initialization

New feature

Change to

existing feature

Bug fix

New work

request

Other

How do we handle unreliable data?

•Don't use it

•Find substitute data to convey the desired
information

•Convince user group and tool provider to
modify data collection procedure

Unreliable data

•Don't use it -- severity

•Find substitute data – use other ways to
determine if it's a bug

•Modify data collection procedure -- add a
new "bug identification" field

Lessons Learned

• Technology must provide an obvious benefit

• Demonstrate results on target users’ data

• Relate the technology to problems of the users

• Tools should be simple, simple, simple

• little or no training

• minimal inputs from user; automated data acquisition

• results easy to interpret

Initial prediction view for

Bluestone2008.1

All files are listed in decreasing

order of predicted faults

The Art and Craft of

Technology Transfer

A tale in 4 acts

Act I

• Time

• Sometime in the past

• Setting

• An empty conference room, in a building occupied by
~3000 software designers, developers and testers of a
large telecom corporation (Building Z)

• In the room, a conference table with 12 seats

• On the table, a projector

Act I, Scene 1

• The Players

• T. Ostrand, E. Weyuker (members of AT&T Research)

• Manager W, supervisor of ~30 people, managing an inventory
project that the researchers have studied, and for which they
have achieved good prediction results

• Manager X, supervisor of ~100 people, managing a project
the researchers would like to investigate, and persuade to
adopt the technology

• Manager Y, supervisor of ~120 people, managing a project the
researchers would like to investigate, and persuade to adopt
the technology

Act I, Scene 1

The empty conference room, 15 minutes before a scheduled
meeting.

• Enter researchers

• TO: “This room is really well-hidden; we’re lucky we found it.
Where’s the cable for the projector?”

• Much looking around for the cable.

• EW: “They’ll be here in 5 minutes!”

• Desperate call to local tech support

• Finally the cable is found in a closet, and plugged in to the
researcher’s laptop. Several attempts to attach to the research
network follow.

• The researcher manages to connect to his home network, seconds
before ….

Act I, Scene 2

• Enter Manager W

• Mgr W: “I never knew this room was here. It’s very far
from my office”

• TO: “Are the others on their way?”

• Mgr W: “X couldn’t make it this morning, but Y will be
here”

• 5 minutes pass.

• Enter Manager Y

• Mgr Y: “I never knew this room was here. It’s terribly far
from my office.”

Act I, Scene 2 (cont.)

• TO: “Thanks for coming. We’re here to show you the fault
prediction tool that we’ve successfully applied to W’s
system. I’ve logged into that system, and will run the tool
directly on the last release”

• TO brings up the tool, explains its very simple interface,
and starts to type in the required inputs to request fault
predictions for the last release (2010.1).

• Mgr Y: “That release has just been sent to the field, and
we’re starting system test on the next one. Could you get
fault predictions for 2010.2?”

• TO requests fault predictions for 2010.2.

Act I, Scene 3

(About 1 minute later)

The prediction results appear, showing the first 20 files in
the list of predicted most faulty files.

Since this is run on the real system, the real file names are
shown.

Mgr Y looks at the list, and takes out his cell phone.

Mgr Y: “Excuse me a moment”

(dials)

Mgr Y: “X, you better come over here”

Act I, Scene 4

(About 10 minutes later)

Enter Manager X

Mgr X: “I never knew this room was here. It’s farther from
my office than anything else in this building”

TO: “Thanks for coming. We’re running a demo of our fault
prediction tool”

Mgr Y: “Look at the list of files. Some of these are in your
subsystem.

Mgr X: "I know that file1,...,file5 are complex and have
problems, but I thought file6 and file7 were in good shape.
We’ll do code reviews on them”

Act I, Scene 4 (cont.)

The demo continues.

Manager X is impressed that the tool could identify
the files that he knew were problematic, and
gives assurance that his team will look more
closely at file6 and file7.

The presentation concludes with all managers
agreeing that the tool was impressive, and
worthy of consideration.

Act II

Time:

About 6 months later

Setting:

The researchers’ home office.

Enter TO, EW

TO: “We’ve had a couple of conversations with the
managers since our demo 6 months ago, but so
far no request to install the tool and provide
some training.”

Act III

Time:

6 months later

Setting:

A large auditorium in Building Z, occupied by
~100 software developers & testers from the
company

Occasion:

An all-company symposium on current software
methods, products, and tools.

Act III, Scene 1

Symposium Program

• Keynote address, by invited speaker from
external software company

• (other presentations)

• Software Fault Prediction Tool, by TO & EW

• (more presentations)

Act III, Scene 2

• Coffee Break

Several Symposium attendees express interest in
applying the prediction tool to their projects.

They request follow-up information and demos.

Act IV, sometime in the future

Fault Prediction and SBSE

• Where have we used SBSE techniques in our
prediction work?

• Where could we use SBSE techniques?

Contributions from the audience are welcome
and will be gratefully acknowledged.

Search-based Software Engineering

• Problem formulation

• Set of candidate solutions

• Fitness function

Problem Formulation

Given a system with k releases, R1, ..., Rk, Rk+1

and complete knowledge of faults, changes and
file data for releases 1,...,k

Construct a general prediction model that will be
made specific for each release, and that yields a
predicted fault count for each file of release Ri,
using data from releases R1,...,R(i-1).

That model will then be used to predict fault
counts for the files of release Rk+1.

Set of candidate solutions

Data collection procedure

Automated extraction from configuration
management/version control system

Attributes that are potential predictor variables

static code properties

change and fault history

developer information

Format and parameters of a prediction function

negative binomial regression

Fitness Function

Meaningful evaluation of prediction quality

faults in first 20% of files

fault-percentile average

Brief summary of our prediction work

• Developed the Standard Model based on
negative binomial regression.

• Applied Standard Model to 9 large industrial
systems, developed both in and out of AT&T

• Examined and evaluated 3 alternative modeling
approaches

• Evaluated multiple different sets of independent
variables to drive the prediction model

• Defined a new evaluation function to measure
the prediction quality

The Standard Model

• Target systems are large (>100,000LOC, 100s of
files), long-lived systems with regular periodic
releases

• Goal is to identify the files most likely to have
faults in the system’s next release, before
system testing of that release begins

• Output (dependent) variable is predicted number
of faults per file in the next release of the system

The Standard Model

• Predictor (independent) variables

• KLOC

• Previous faults (n-1)

• Previous changes (n-1, n-2)

• File age (number of releases)

• File type (C,C++,java,sql,make,sh,perl,...)

• Underlying statistical model

• Negative binomial

How did we create the Standard Model?

• Search for attributes that are potential predictors

• Scatter plots of faults vs.

• LOC

• counts of previous faults and changes

• age of file, language

• Plots of decreasing fault counts

• Correlations between fault counts and potential
predictor variables

• Format of predictor function

• negative binomial regression

• examined others (decision tree, random forests, BART)

Release 12 Cumulative Faults, by decreasing faults and decreasing file size

0

50

100

150

200

250

300

1 103 205 307 409 511 613 715 817 919 1021 1123 1225 1327 1429 1531 1633 1735 1837 1939

Number of files

N
u

m
b

e
r

o
f

fa
u

lt
s

Cum faults sorted by decreasing faults

Descending by file size, ties broken in least
favorable way, sorted by increasing faults.

Release 12 Cumulative faults, by size and by cyclomatic number

0

50

100

150

200

250

1 66 131 196 261 326 391 456 521 586 651 716 781 846 911 976 1041 1106 1171 1236 1301

Number of files

N
u

m
b

e
r

o
f

fa
u

lt
s

Decreasing faults

Decreasing size

Decreasing cycl #

0

50

100

150

200

250

1 57 113 169 225 281 337 393 449 505 561 617 673 729 785 841 897 953 100910651121117712331289

N
u

m
b

e
r

o
f

fa
u

lt
s

Number of files

Cumulative faults, by size, cyclomatic number, and random order

Decreasing faults

Decreasing size

Decreasing cycl #

Random order 1

Random order 2

Correlations between faults and

attributes, Maintenance A

LOC .231

Changes in N-1 .314

Faults in N-1 .365

New File .032

Developers in N-1 .303

Developers in 1,...,N-1 .228

Callers (in N) .084

Callees (in N) .195

New Callers .015

New Callees .028

Faulty Callers in N-1 .184

Faulty Callees in N-1 .278

Changed Callers in N-1 .160

Changed Callees in N-1 .253

Fitness Function

• Our goal is to predict Fault-Proneness of files,
not Faulty or non-Faulty

• Prediction produces an ordering of files

• Fitness Fcn 1: the percent of actual faults
contained in the top X% of the ranking.

• Fitness Fcn 2: Fault-percentile average = the
average value of FF1 over all values of X.

Objectives for Fault Prediction
(Harman, PROMISE2010)

•Predictive quality/ accuracy of predictions

•Cost

•Privacy

•Readability

•Actionable

Objectives

• Quality: Yield of faults in top 20% ranges from 75-94%

• Cost: With an automated tool, cost is near 0

• Privacy:

+ Results are available only to project that requests them

+ Standard model does not include any programmer-related
information

+ Developer-augmented models use aggregate counts, not
individual.

- A specific file may be associated with one or more specific
programmers. Fault predictions may impact those individuals.

• Readability: Tool is designed so that prediction results are
very straightforward to interpret.

Objectives

Actionable: Clear use of prediction results

• Consistent high fault predictions over several releases
can indicate a need to re-design and re-implement a file
(refactoring)

• Files at the top of the predicted fault ranking are
subjected to increased test coverage and more frequent
testing

• The most skilled testers are assigned to design tests for
the most fault-prone files

• Test scheduling can be influenced by the distribution of
fault predictions: few high predictions vs. many
moderate predictions.

Variations of the fault prediction model

• Predictor variables

• Developer counts

• Individual developer history

• Calling structure

• Fine-grained changes (churn)

Developer attributes we considered

How many different people have worked on the
code recently?

How many different people have ever worked
on the code?

How many first-time viewers have changed the
code?

Which specific people have worked on the
code?

0

1

2

3

4

5

6

7

8

9

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

F
a
u

lt
s

Number of Developers

Average Faults per File vs. Previous Developer Counts

Developers Prev Release

New Developers Prev
Release

Cumulative Developers, All
Previous Releases

Releases of Business Maintenance A

50

55

60

65

70

75

80

85

90

95

100

3 4 5 6 7 8 9 10 11 12 13 14 15 16

Faults in top 20% of files, Provisioning 2

Standard Model

Cumulative developers

Total developers touching file in all previous releases

Can we utilize characteristics of individual

developers?

The BuggyFile Ratio

If d modifies k files in release N, and if b of
them have bugs in release N+1, the
buggyfile ratio for d is b/k

Provisioning 2 has 107 programmers.

Over 15 releases, their buggyfile ratios
vary between 0 and 1

The average is about 0.4

Average buggyfile ratio, all programmers

Buggyfile ratio

Buggyfile ratio
more typical cases

Calling Structure

• Are files that have high rate of interaction with
other files more fault-prone?

File Q

•Method 1

•Method 2

File X

File Y

File Z

Callees of File Q

File A

File B

Callers of File Q

FAULTY?

Calling structure attributes that we

investigated

For each file:

• number of callers & callees

• number of new callers & callees

• number of prior new callers & callees

• number of prior changed callers & callees

• number of prior faulty callers & callees

• ratio of internal calls to total calls

Fault prediction by multi-variable models

• Code and history attributes, no calling structure

• Code and history attributes, including calling
structure

• Code attributes only, including calling structure

Method: Start with the single best attribute, and
repeatedly add the attribute that most improves
the prediction.

Forward Sequential Search

Model construction process

Initialize:

Model M consists solely of RelNum.

A = a set of candidate predictor attributes

Add Variable:

for each attribute a in A,

construct a model consisting of M ∪ {a}.

create predictions for the system.

evaluate the likelihood ratio χ2 statistic.

determine the single attribute a* with the highest χ2 statistic.

if the resulting P-value is >= 0.001, STOP. M is the final model.

else (i.e., P-value is < 0.001)

add a* to M.

remove a* from A.

if A is empty, STOP. M is the final model.

else repeat the Add Variable step.

Code and history attributes, including

calling structure

68.8

72.2
75.1

77.4 77.9 78.0 78.3

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

100.0

Changes

in N-1

LOC SQL_C file New File Changed

Callees in

N-1

Faults in

N-1

New in N-1

P
e
rc

e
n

t
o

f
F

a
u

lt
s

Augmenting standard model with fine-

grained change metrics

Change metrics in the standard model

• Changed/not changed

• Number of changes during a release

Do fine-grained change metrics provide more
information than simple change counts?

• Number of lines added

• Number of lines deleted

• Number of lines modified

• Relative change (line changes/LOC)

One-step Forward Search

• We considered 8 different measures of change, both
absolute and relative, and 3 versions (raw, square root,
fourth root) of each as potential variables to augment a
simplified version of the Standard Model.

• Each variable was first evaluated in a uni-variate model.

• Each of the 48 variables, and binary Changed/not
Changed, was added separately to the Standard Model

Fault-percentile averages for univariate

predictor models: Provisioning 2 system
(best result from raw variable, square root, fourth

root)

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

log(KLOC)

Prior Changes

Prior Adds+Deletes+Mods

Prior Developers

Prior Lines Added

Prior Lines Modified

Prior Changed

Prior Faults

Prior Lines Deleted

Language

Age

Standard Model

FPA, univariate models

Predictor Variables Mean FPA Standard error of increment

(variation over releases)

Base (KLOC, Age, File type) 90.93 ---

(Prior Changes)1/2 93.35 0.24

(Prior Add+Deletes+Mods)1/4 93.28 0.26

(Prior Add+Deletes+Mods/LOC)1/4 93.19 0.28

(Prior Developers)1/2 93.17 0.23

(Prior Lines Added)1/4 93.15 0.26

(Prior Lines Added/LOC)1/4 93.03 0.29

Prior Changed 92.95 0.23

(Prior Cum Developers)1/2 92.93 0.17

(Prior Lines Modified)1/4 92.91 0.20

(Prior Lines Modified/LOC)1/4 92.81 0.20

(Prior Faults)1/4 92.21 0.16

(Prior New Developers)1/2 92.06 0.25

(Prior Lines Deleted)1/4 92.06 0.16

(Prior Lines Deleted/LOC)1/4 92.00 0.18

(Prior-Prior Changes)1/4 91.96 0.14

Base Model, and added variables

• Base model

• KLOC

• File age (number of releases)

• File type (C,C++,java,sql,make,sh,perl,...)

89 90 91 92 93 94

Base 1

prev-deletes

prev-changed

prev-developers

prev-adds,dels,mods

Standard Model

Mean FPA, Provisioning System

87 88 89 90 91 92 93

Base 1

prev-prev changes

prev-deletes

prev-mods

prev-changed

prev-adds

prev-developers

prev-adds,dels,mods

prev-changes

Standard Model

Mean FPA, Utility System

Is SBSE in our future?

•Finding optimal set of attributes for
prediction model

•Looking for the best way to make use of
individual developer information

That's all folks

Questions?

