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Many different eperimental setups
are used in the literature

A review of 107 papers shows:
I A large range of data set sizes
I More than 11 different evaluation measures
I 7 different resampling schemes
I Only few comparisons against simple baseline models

Question: What influence does this have on the stability of
results and the practical predictive benefits?
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Experimental Setup

Data Sets
I NASA MDP
I AR (Tosun et al., 2009)
I Eclipse (Zimmermann

et al., 2007)
# of instances 36–17000

Algorithms
I RPart
I RandomForest
I GLM/Logistic

Regression
I Naive Bayes
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One important aspect is conclusion
stability

I Stability: Consistent results for repeated executions
I Ensure reproducability
I Protect against cherry picking

I Randomization (due to resampling or the learning
algorithm) may lead to unstable results

In the following, we use 200 runs for each algorithm on each
data set
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Three resampling schemes are often
used

I 10-fold Cross Validation (10-CV)
I 50-times repeated random split (50-RSS)
I 10-times 10-fold Cross Validation (10×10-CV)
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Resampling schemes differ in terms
of variance
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D
en
si
ty

0
5

10
15

20
25

0.5 0.6 0.7 0.8

AR3

0
20

40
60

80
10
0

0.82 0.84 0.86 0.88 0.90

PC1

0
20
0

40
0

60
0

80
0

0.840 0.845 0.850 0.855

v2.0

10−CV 50−RSS 10x10−CV

6 / 15



Resampling schemes differ in terms
of variance (contd.)
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Ranking according to variance
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Does higher variance matter?

consistency
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Consistency when comparing Logistic Regression and LDA
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The variance has an influence, e.g.
when Demsar’s test is used
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There are more sources of variance

I Evaluation measures
I Class Imbalance
I . . .

. . . so one has to be careful to get reproducable results
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Traditional Performance Measures
are often optimistic

Files

%

0
20

40
60

80
10
0

11 / 15



Traditional Performance Measures
are often optimistic

Files Defects

%

0
20

40
60

80
10
0

11 / 15



Traditional Performance Measures
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The largest 20% of the files contain
most of the defects

ddr
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. . . only RandomForst performs
significantly better
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General pattern is consistent across data sets (Mende et al.,
2009; Mende, 2010; Mende et al., 2011)
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Random features can perform well
for regression models
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Recommendations

In general
I Use 10×10-CV (with stratification)
I Use simple models as benchmarks
I Consider the treatment effort

For SBSE
I Use simple models as benchmarks
I Consider the variance
→ to avoid cherry picking

Opportunity for SBSE: Identified defects vs. treatment effort?
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Poll: How do you calculate F1?

. . . when there are invalid partitions

1 Average over all partitions, ignoring invalid ones
2 Average over all partitions, using 0 for invalid ones

3 Calculate TP/FP/FN per partition, and calculate F1 across
all partitions? (Forman and Scholz, 2010)
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Ooops. . .
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