On the Evaluation of Defect Prediction Models

Thilo Mende

Software Engineering Group, University of Bremen, Germany (Alumni)

15th COW
24.10.2011
Many different experimental setups are used in the literature.

A review of 107 papers shows:

- A large range of data set sizes
- More than 11 different evaluation measures
- 7 different resampling schemes
- Only few comparisons against simple baseline models

Question: What influence does this have on the stability of results and the practical predictive benefits?
Many different experimental setups are used in the literature

A review of 107 papers shows:

- A large range of data set sizes
- More than 11 different evaluation measures
- 7 different resampling schemes
- Only few comparisons against simple baseline models

Question: What influence does this have on the stability of results and the practical predictive benefits?
Experimental Setup

Data Sets
- NASA MDP
- AR (Tosun et al., 2009)
- Eclipse (Zimmermann et al., 2007)

of instances 36–17000

Algorithms
- RPart
- RandomForest
- GLM/Logistic Regression
- Naive Bayes
One important aspect is conclusion stability

- **Stability**: Consistent results for repeated executions
 - Ensure reproducability
 - Protect against cherry picking
- **Randomization** (due to resampling or the learning algorithm) may lead to **unstable results**

In the following, we use 200 runs for each algorithm on each data set
Three resampling schemes are often used

- 10-fold Cross Validation (10-CV)
- 50-times repeated random split (50-RSS)
- 10-times 10-fold Cross Validation (10×10-CV)
Resampling schemes differ in terms of variance.
Resampling schemes differ in terms of variance (contd.)

Ranking according to variance
Does higher variance matter?

Consistency when comparing Logistic Regression and LDA
The variance has an influence, e.g. when Demsar’s test is used.
There are more sources of variance

- Evaluation measures
- Class Imbalance
- ...

so one has to be careful to get reproducible results.
There are more sources of variance

- Evaluation measures
- Class Imbalance
- ...

... so one has to be careful to get **reproducible** results
Traditional Performance Measures are often optimistic.
Traditional Performance Measures are often optimistic
Traditional Performance Measures are often optimistic
The largest 20% of the files contain most of the defects
General pattern is consistent across data sets (Mende et al., 2009; Mende, 2010; Mende et al., 2011)
Random features can perform well for regression models

These results are based on data sets provided by D’Ambros et al. (2010)
Random features can perform well for regression models

These results are based on data sets provided by D’Ambros et al. (2010)
Random features can perform well for regression models

These results are based on data sets provided by D’Ambros et al. (2010)
In general

- Use 10×10-CV (with stratification)
- Use simple models as benchmarks
- Consider the treatment effort
Recommendations

In general
- Use 10×10-CV (with stratification)
- Use simple models as benchmarks
- Consider the treatment effort

For SBSE
- Use simple models as benchmarks
- Consider the variance
 → to avoid cherry picking
Recommendations

In general
► Use 10×10-CV (with stratification)
► Use simple models as benchmarks
► Consider the treatment effort

For SBSE
► Use simple models as benchmarks
► Consider the variance
 → to avoid cherry picking

Opportunity for SBSE: Identified defects vs. treatment effort?
On the Evaluation of Defect Prediction Models

Thilo Mende
Software Engineering Group, University of Bremen, Germany (Alumni)
tmende@informatik.uni-bremen.de

Universität Bremen
Poll: How do you calculate F1?

... when there are invalid partitions

1. Average over all partitions, ignoring invalid ones
2. Average over all partitions, using 0 for invalid ones
Poll: How do you calculate F1?

... when there are invalid partitions

1. Average over all partitions, ignoring invalid ones
2. Average over all partitions, using 0 for invalid ones
3. Calculate TP/FP/FN per partition, and calculate F1 across all partitions? (Forman and Scholz, 2010)
Ooops...

