
Optimising Cloud Computing with SBSE

David R. White & Jeremy Singer
{david.r.white, jeremy.singer}@glasgow.ac.uk

University of Glasgow

Monday 25 July 2011



VIRTUAL MACHINES OPPORTUNITIES FOR SBSE TAKE-HOME

OUTLINE

VIRTUAL MACHINES

OPPORTUNITIES FOR SBSE

TAKE-HOME



VIRTUAL MACHINES OPPORTUNITIES FOR SBSE TAKE-HOME

OUTLINE

VIRTUAL MACHINES

OPPORTUNITIES FOR SBSE

TAKE-HOME



VIRTUAL MACHINES OPPORTUNITIES FOR SBSE TAKE-HOME

OPTIMISING VIRTUAL MACHINE MANAGEMENT

CPUs RAM

Hypervisor

Virtual 
Machines

JVM JVM

CPUs RAM

Hypervisor

Virtual 
Machines

JVM JVM

CPUs RAM

Hypervisor

Virtual 
Machines

JVM JVM

CPUs RAM

Hypervisor

Virtual 
Machines

JVM JVM

CPUs RAM

Hypervisor

Virtual 
Machines

JVM JVM

CPUs RAM

Hypervisor

Virtual 
Machines

JVM JVM

CPUs RAM

Hypervisor

Virtual 
Machines

JVM JVM

CPUs RAM

Hypervisor

Virtual 
Machines

JVM JVM

CPUs RAM

Hypervisor

Virtual 
Machines

JVM JVM



VIRTUAL MACHINES OPPORTUNITIES FOR SBSE TAKE-HOME

OPTIMISING VIRTUAL MACHINE MANAGEMENT

CPUs RAM

Hypervisor

Virtual 
Machines

JVM JVM

CPUs RAM

Hypervisor

Virtual 
Machines

JVM JVM

CPUs RAM

Hypervisor

Virtual 
Machines

JVM JVM

CPUs RAM

Hypervisor

Virtual 
Machines

JVM JVM

CPUs RAM

Hypervisor

Virtual 
Machines

JVM JVM

CPUs RAM

Hypervisor

Virtual 
Machines

JVM JVM

CPUs RAM

Hypervisor

Virtual 
Machines

JVM JVM

CPUs RAM

Hypervisor

Virtual 
Machines

JVM JVM

CPUs RAM

Hypervisor

Virtual 
Machines

JVM JVM



VIRTUAL MACHINES OPPORTUNITIES FOR SBSE TAKE-HOME

OPTIMISING VIRTUAL MACHINE MANAGEMENT

CPUs RAM

Hypervisor

Virtual 
Machines

JVM JVM

CPUs RAM

Hypervisor

Virtual 
Machines

JVM JVM

CPUs RAM

Hypervisor

Virtual 
Machines

JVM JVM

CPUs RAM

Hypervisor

Virtual 
Machines

JVM JVM

CPUs RAM

Hypervisor

Virtual 
Machines

JVM JVM

CPUs RAM

Hypervisor

Virtual 
Machines

JVM JVM

CPUs RAM

Hypervisor

Virtual 
Machines

JVM JVM

CPUs RAM

Hypervisor

Virtual 
Machines

JVM JVM

CPUs RAM

Hypervisor

Virtual 
Machines

JVM JVM



VIRTUAL MACHINES OPPORTUNITIES FOR SBSE TAKE-HOME

OPTIMISING VIRTUAL MACHINE MANAGEMENT

CPUs RAM

Hypervisor

Virtual 
Machines

JVM JVM

CPUs RAM

Hypervisor

Virtual 
Machines

JVM JVM

CPUs RAM

Hypervisor

Virtual 
Machines

JVM JVM

CPUs RAM

Hypervisor

Virtual 
Machines

JVM JVM

CPUs RAM

Hypervisor

Virtual 
Machines

JVM JVM

CPUs RAM

Hypervisor

Virtual 
Machines

JVM JVM

CPUs RAM

Hypervisor

Virtual 
Machines

JVM JVM

CPUs RAM

Hypervisor

Virtual 
Machines

JVM JVM

CPUs RAM

Hypervisor

Virtual 
Machines

JVM JVM



VIRTUAL MACHINES OPPORTUNITIES FOR SBSE TAKE-HOME

OPTIMISING A SINGLE JAVA VIRTUAL MACHINE

CPUs RAM

Process
Scheduler

Virtual Memory
Manager

JVMHeap

JVMHeap

JVMHeap

Competition for resources must be managed.



VIRTUAL MACHINES OPPORTUNITIES FOR SBSE TAKE-HOME

JVM CONFIGURATION

What heap sizes should I use?

-Xms<number><unit> Initial size of heap

-Xmx<number><unit> Maximum size of heap



VIRTUAL MACHINES OPPORTUNITIES FOR SBSE TAKE-HOME

JVM CONFIGURATION - II

Which Garbage Collector should I use?
I SemiSpace
I MarkSweep
I GenCopy
I GenMS
I CopyMS
I RefCount

Many, many more decisions to be made. . .



VIRTUAL MACHINES OPPORTUNITIES FOR SBSE TAKE-HOME

JVM CONFIGURATION - II

Which Garbage Collector should I use?
I SemiSpace
I MarkSweep
I GenCopy
I GenMS
I CopyMS
I RefCount

Many, many more decisions to be made. . .



VIRTUAL MACHINES OPPORTUNITIES FOR SBSE TAKE-HOME

JVM CONFIGURATION: DETAIL - I

schedulingMultiplier
eagerCompleteSweep Should we eagerly finish sweeping at the start of a collection
protectOnRelease Should memory be protected on release?
noFinalizer Should finalization be disabled?
noReferenceTypes Should reference type processing be disabled?
fullHeapSystemGC Should a major GC be performed when a system GC is triggered?
ignoreSystemGC Should we ignore calls to java.lang.System.gc?
variableSizeHeap Should we shrink/grow the heap to adjust to application working set?
eagerMmapSpaces If true, all spaces are eagerly demand zero mmapped at boot time
markSweepMarkBits Number of bits to use for the header cycle of mark sweep spaces
stressFactor Force a collection after this much allocation
metaDataLimit Trigger a GC if the meta data volume grows to this limit
boundedNursery Bound the maximum size of the nursery to this value
fixedNursery Fix the minimum and maximum size of the nursery to this value
threads Number of GC threads to use

enable_recompilation Should the adaptive system recompile hot methods?
enable_precompile Should the adaptive system precompile all methods given in the advice file before the user thread is started?
adaptive_inlining Should we use adaptive feedback-directed inlining?
osr_promotion Should AOS promote baseline-compiled methods to opt?
background_recompilation Should recompilation be done on a background thread or on next invocation?

method_sample_size How many timer ticks of method samples to take before reporting method hotness to controller
decay_frequency After how many clock ticks should we decay
dcg_decay_rate What factor should we decay call graph edges hotness by
dcg_sample_size After how many timer interrupts do we update the weights in the dynamic call graph?
inline_ai_seed_multiplier Initial edge weight of call graph is set to AI_SEED_MULTIPLER * (1/AI_CONTROL_POINT)
inline_ai_hot_callsite_threshold What percentage of the total weight of the dcg demarcates warm/hot edges
offlinePlan Name of offline inline plan to be read and used for inlining
early_exit_time Value of controller clock at which AOS should exit if EARLY_EXIT is true
invocation_count_threshold Invocation count at which a baseline compiled method should be recompiled
invocation_count_opt_level Opt level for recompilation in invocation count based system
counter_based_sample_interval What is the sample interval for counter-based sampling
max_opt_level The maximum optimization level to enable.

focus_effort Focus compilation effort based on frequency profile data
reads_kill Should we constrain optimizations by enforcing reads-kill?
inline Inline statically resolvable calls
inline_guarded Guarded inlining of non-final virtual calls
inline_guarded_interfaces Speculatively inline non-final interface calls



VIRTUAL MACHINES OPPORTUNITIES FOR SBSE TAKE-HOME

JVM CONFIGURATION: DETAIL - II
inline_preex Pre-existence based inlining
simplify_integer_ops Simplify operations on integers
simplify_long_ops Simplify operations on longs
simplify_float_ops Simplify operations on floats
simplify_double_ops Simplify operations on floats
simplify_ref_ops Simplify operations on references
simplify_tib_ops Simplify operations on TIBs
simplify_field_ops Simplify operations on fields
simplify_chase_final_fields Chase final fields avoiding loads at runtime
local_constant_prop Perform local constant propagation
local_copy_prop Perform local copy propagation
local_cse Perform local common subexpression elimination
local_expression_folding Should we try to fold expressions with constants locally?
control_static_splitting CFG splitting to create hot traces based on static heuristics
control_unwhile Turn whiles into untils
escape_simple_ipa Eagerly compute method summaries for simple escape analysis
escape_scalar_replace_aggregates If possible turn aggregates (objects) into variable definition/uses
escape_monitor_removal Try to remove unnecessary monitor operations
escape_invokee_thread_local Compile the method assuming the invokee is thread-local. Cannot be properly set on command line.
ssa Should SSA form be constructed on the HIR?
ssa_expression_folding Should we try to fold expressions with constants in SSA form?
ssa_redundant_branch_elimination Eliminate redundant conditional branches
ssa_licm_ignore_pei Assume PEIs do not throw or state is not observable
ssa_load_elimination Should we perform redundant load elimination during SSA pass?
ssa_coalesce_after Should we coalesce move instructions after leaving SSA?
ssa_loop_versioning Create copies of loops where runtime exceptions are checked prior to entry
ssa_live_range_splitting Split live ranges using LIR SSA pass?
ssa_gcp Perform global code placement
ssa_gcse Perform global code placement
ssa_global_bounds Perform (incomplete/unsafe) global Array Bound Check elimination on Demand
ssa_splitblock_to_avoid_rename When leaving SSA create blocks to avoid renaming variables
ssa_splitblock_for_local_live When leaving SSA create blocks for local liveness
ssa_splitblock_into_infrequent When leaving SSA create blocks to avoid adding code to frequently executed blocks
reorder_code Reorder basic blocks for improved locality and branch prediction
reorder_code_ph Reorder basic blocks using Pettis and Hansen Algo2
h2l_inline_new Inline allocation of scalars and arrays
h2l_inline_write_barrier Inline write barriers for generational collectors
h2l_inline_primitive_write_barrier Inline primitive write barriers for certain collectors
h2l_no_callee_exceptions Assert that any callee of this compiled method will not throw exceptions. Cannot be properly set on command line.
h2l_call_via_jtoc Plant virtual calls via the JTOC rather than from the tib of anobject when possible
l2m_handler_liveness Store liveness for handlers to improve dependence graph at PEIs
l2m_schedule_prepass Perform prepass instruction scheduling



VIRTUAL MACHINES OPPORTUNITIES FOR SBSE TAKE-HOME

JVM CONFIGURATION: DETAIL - III

regalloc_coalesce_moves Attempt to coalesce to eliminate register moves?
regalloc_coalesce_spills Attempt to coalesce stack locations?
adaptive_instrumentation_sampling Perform code transformation to sample instrumentation code.
adaptive_no_duplication When performing inst. sampling, should it be done without duplicating code?
adaptive_processor_specific_counter Should there be one CBS counter per processor for SMP performance?
adaptive_remove_yp_from_checking Should yieldpoints be removed from the checking code (requires finite sample interval)
osr_guarded_inlining Insert OSR point at off branch of guarded inlining?
osr_inline_policy Use OSR knowledge to drive more aggressive inlining?

profile_edge_count_input_file Input file of edge counter profile data
profile_infrequent_threshold Cumulative threshold which defines the set of infrequent basic blocks
profile_cbs_hotness Threshold at which a conditional branch is considered to be skewed
escape_max_array_size Maximum size of array to replaced with registers by simple escape analysis
ssa_load_elimination_rounds How many rounds of redundant load elimination will we attempt?
l2m_max_block_size Maximum size of block for BURS, larger blocks are split
regalloc_simple_spill_cost_move_factor spill penalty for move instructions
regalloc_simple_spill_cost_memory_operand_factor spill penalty for registers used in memory operands
control_tableswitch_cutoff If a tableswitch comprises this many or fewer comparisons convert it into multiple if-then-else style branches
control_cond_move_cutoff How many extra instructions will we insert in order to remove a conditional branch?
control_unroll_log Unroll loops. Duplicates the loop body 2ˆn times.
control_static_splitting_max_cost Upper bound on the number of instructions duplicated per block when trying to create hot traces with static splitting
control_well_predicted_cutoff Don’t replace branches with conditional moves if they are outside of the range of 0.5 +- this value
inline_max_target_size Static inlining heuristic: Upper bound on callee size
inline_max_inline_depth Static inlining heuristic: Upper bound on depth of inlining
inline_max_always_inline_target_size Static inlining heuristic: Always inline callees of this size or smaller
inline_massive_method_size Static inlining heuristic: If root method is already this big, then only inline trivial methods
inline_max_arg_bonus Maximum bonus for reducing the perceived size of a method during inlining.
inline_precise_reg_array_arg_bonus Bonus given to inlining methods that are passed a register of a known precise type.
inline_declared_aastored_array_arg_bonus Bonus given when there’s potential to optimize checkstore portion of aastore bytecode on parameter
inline_precise_reg_class_arg_bonus Bonus given to inlining methods that are passed a register of a known precise type.
inline_extant_reg_class_arg_bonus Bonus given to inlining methods that are passed a register that’s known not to be null.
inline_int_const_arg_bonus Bonus given to inlining methods that are passed an int constant argument
inline_null_const_arg_bonus Bonus given to inlining methods that are passed a null constant argument
inline_object_const_arg_bonus Bonus given to inlining methods that are passed an object constant argument
inline_call_depth_cost As we inline deeper nested methods what cost (or bonus) do we wish to give to deter (or encourage) nesting of deeper methods?
inline_ai_max_target_size Adaptive inlining heuristic: Upper bound on callee size
inline_ai_min_callsite_fraction Adaptive inlining heuristc: Minimum fraction of callsite distribution for guarded inlining of a callee



VIRTUAL MACHINES OPPORTUNITIES FOR SBSE TAKE-HOME

OUTLINE

VIRTUAL MACHINES

OPPORTUNITIES FOR SBSE

TAKE-HOME



VIRTUAL MACHINES OPPORTUNITIES FOR SBSE TAKE-HOME

WHY SBSE?

Manual optimisation is difficult: we have a complex system

Variables include software’s behaviour, phase, and interactions

Solutions are non-obvious and require creativity.



VIRTUAL MACHINES OPPORTUNITIES FOR SBSE TAKE-HOME

A COMMERCIALLY RELEVANT PROBLEM FOR GP

“I think GP has a toy problem problem.”

Sean Luke, June 2011.

This is most certainly not a toy problem!



VIRTUAL MACHINES OPPORTUNITIES FOR SBSE TAKE-HOME

EXISTING OPTIMISATIONS

How are decisions made at the moment?

Answer: they’re often not - just deferred!

Most recent version of Hotspot JVM has some adaptation.

This is a case of “Best effort” - so why not GP?



VIRTUAL MACHINES OPPORTUNITIES FOR SBSE TAKE-HOME

EXISTING OPTIMISATIONS

How are decisions made at the moment?

Answer: they’re often not - just deferred!

Most recent version of Hotspot JVM has some adaptation.

This is a case of “Best effort” - so why not GP?



VIRTUAL MACHINES OPPORTUNITIES FOR SBSE TAKE-HOME

EXISTING OPTIMISATIONS

How are decisions made at the moment?

Answer: they’re often not - just deferred!

Most recent version of Hotspot JVM has some adaptation.

This is a case of “Best effort” - so why not GP?



VIRTUAL MACHINES OPPORTUNITIES FOR SBSE TAKE-HOME

EXISTING OPTIMISATIONS

How are decisions made at the moment?

Answer: they’re often not - just deferred!

Most recent version of Hotspot JVM has some adaptation.

This is a case of “Best effort” - so why not GP?



VIRTUAL MACHINES OPPORTUNITIES FOR SBSE TAKE-HOME

A CONCRETE EXAMPLE: HEAP SIZE CONTROL

Heap Size

Execution
Time

"Sweet 
Spot"

U
n

a
b

le
 t

o
 c

o
m

p
le

te

Excessive 
Paging

High
GC



VIRTUAL MACHINES OPPORTUNITIES FOR SBSE TAKE-HOME

JIKES RVM HEAP RESIZING

Heap Occupancy
G

C
O

ve
rh

ea
d

0.00 0.10 0.30 0.60 0.80 1.00
0.00 0.90 0.90 0.95 1.00 1.00 1.00
0.01 0.90 0.90 0.95 1.00 1.00 1.00
0.02 0.95 0.95 1.00 1.00 1.00 1.00
0.07 1.00 1.00 1.10 1.15 1.20 1.20
0.15 1.00 1.00 1.20 1.25 1.35 1.30
0.40 1.00 1.00 1.25 1.30 1.50 1.50
1.00 1.00 1.00 1.25 1.30 1.50 1.50

Look-up table for heap-resize coefficient.



VIRTUAL MACHINES OPPORTUNITIES FOR SBSE TAKE-HOME

DESIGN DECISIONS

(Private Communication)
“. . . back in 2003 [anon] and I did some experimental
tuning and came up with the numbers by eyeballing things.
At the time, it seemed to be somewhat stable and making
reasonable decisions but that was also about 4 major
versions ago and I don’t think anyone has really looked at it
seriously since then. I think there was some amount of
sensitivity to the values. . . ”



VIRTUAL MACHINES OPPORTUNITIES FOR SBSE TAKE-HOME

OUTLINE

VIRTUAL MACHINES

OPPORTUNITIES FOR SBSE

TAKE-HOME



VIRTUAL MACHINES OPPORTUNITIES FOR SBSE TAKE-HOME

SUMMARY

I Cloud infrastructure design presents new software
engineering challenges.

I Scheduling and memory management are open to
optimisation.

I Many problems are amenable to SBSE.
I We are looking for collaborators!

. . . and relevant existing work!

{david.r.white, jeremy.singer}@glasgow.ac.uk



VIRTUAL MACHINES OPPORTUNITIES FOR SBSE TAKE-HOME

SEE ALSO

Cloud computing: state-of-the-art and research challenges.
Zhang et al.
Journal of Internet Services and Applications, 1/1, 2010. pp. 7-18.

Overdriver: handling memory overload in an oversubscribed cloud.
Williams et. al.
Proceedings of VEE 2011.

Previous work on service (application) level by Wada et al. and
Nallur et al.

–

{david.r.white, jeremy.singer}@glasgow.ac.uk


	Virtual Machines
	Opportunities for SBSE
	Take-home

