
Searching for Program Invariants using
Genetic Programming and Mutation Testing

Sam Ratcliff, David R. White and John A. Clark.

The 13th CREST Open Workshop

Thursday 12 May 2011

Outline

Invariants

Using GP to find Invariants

Identifying Interesting Invariants

Summary

Outline

Invariants

Using GP to find Invariants

Identifying Interesting Invariants

Summary

What is an invariant?

Algorithm 1 Array sum program

i ,s := 0, 0;
do i 6= n→

i , s := i + 1, s + b[i]
od

Precondition: n ≥ 0
Postcondition: s =

∑n−1
j=0 b[j]

Loop invariant: 0 ≤ i ≤ n and s =
∑i−1

j=0 b[j]

What use is an invariant? What are they good for?

They can be provided as a specification for a programmer.

They can be used to derive programs or to prove them correct.

A well-known example of their use is in the design-by-contract
paradigm.

How do we create invariants?

They are provided by the programmer (sometimes).

We can also try to generate invariants for a given program. . .

The Daikon Invariant Generator

Program

Test
Harness Trace

Data

Java
Front-end

Template
Instantiation

Invariant
Filtering

Candidate
Invariants

The Limitations of Daikon

Daikon is limited in two regards:

• templates are restricted in size to make instantiation tractable.

• invariants are limited to those embodied in the repository of
templates.

We would like to be able to locate invariants of arbitrary size and
complexity. . .

Outline

Invariants

Using GP to find Invariants

Identifying Interesting Invariants

Summary

Using GP to find Invariants

Two different approaches:

Daikon
Brute force-enumeration and data-driven restriction.

Search Approach

Construction of invariants guided by heuristics.

Method

1. Loop invariants are considered by adding dummy methods
(Daikon deals in method entry/exit points).

2. Daikon’s front-end tools are used to generate execution traces.

3. GP is used to search the space of invariants.
(Fitness is the number of samples the invariant is consistent with).

4. Fully-consistent invariants are added to an archive.

5. Syntactic equivalents subsequently punished.

6. Archive is output at the end of the search.

Method Overview

Program

Test
Harness

Daikon
Front-end

Trace
Data

ECJ

Candidate
Invariants

GP Search

A GP search is run for each method.

Used population sizes of {100,250}, and similar total number of
generations.

Mutation (p=0.9) heavily favoured over crossover (p=0.1).

→ Emphasis on individual improvements, exploiting syntactic
similarity of consistent invariants.

GP Search

A GP search is run for each method.

Used population sizes of {100,250}, and similar total number of
generations.

Mutation (p=0.9) heavily favoured over crossover (p=0.1).
→ Emphasis on individual improvements, exploiting syntactic

similarity of consistent invariants.

Functions over Variables

Function Description
= Equals
= 0 Equals zero
> Greater than
≥ Greater than or equal to
≥ 0 Greater than or equal to 0
≥ 1 Greater than or equal to 1
% Modulo
6= Is not equal to
6= 0 Is not equal to zero

Function over Arrays

Function Description
ArrayElement Value at array position
ArrayLessThan Lexical comparison of two arrays
ArrayLEQ Lexical comparison of two arrays
ArraysEqual Numeric comparison of two arrays
IsMemberOf Membership of an array
LEQAllElements Compare value to all values in array
MaxIndex The last index of an array
NotNull Check if array is not null
PreviousElement Element at position prior to argument
Size Array size
SortedArray Is array sorted?

Functions used by Gries

Function Description
AND Logical AND
ArraySum Array sum
GCD Greatest common divisor of variables
IsMemberSubArray Does the subarray contain this value?
LEQSubArray Compare value to subarray
≤ 0 Less than or equal to zero
Negative Multiply by -1
OR Logical OR
PermOfFour Permutation of four values
PermOfTwo Permutation of two values

Example Programs

One set taken from Gries’ work, used previously in Daikon:

Example Inputs Description
Abs int x x set to abs(x)
ArraySum int[] b, int s s set to sum(b)
FourTupleSort int q0, q1, q2, q3 inputs ordered
GCD int x, y x set to gcd(x,y)
Max int x, y, z z set to max(x,y)
MinArray int[] b, int x x set to min. value in b
Perm int x, y x and y ordered by <

. . . and also Bubble Sort, Insertion Sort, Quicksort and Selection Sort.

Results (1/2)

Example Program Point Median Percentage Found
Abs abs 100.00
ArraySum arraysum 100.00
ArraySum loop 92.86
BubbleSort bubblesort 100.00
BubbleSort inner loop 100.00
BubbleSort outer loop 100.00
FourTupleSort fourtuplesort 100.00
GCD gcd 100.00
GCD loop 66.67
InsertionSort insertionsort 100.00
InsertionSort inner loop 53.45
InsertionSort outer loop 86.84

Results (2/2)

Example Program Point Median Percentage Found
Max max 100.00
MinArray minarray 100.00
MinArray loop 100.00
Perm perm 100.00
Quicksort dummy 100.00
Quicksort partition 63.56
Quicksort quicksort 100.00
Quicksort quicksortrecursive 62.50
SelectionSort selectionsort 100.00
SelectionSort inner loop 72.50
SelectionSort outer loop 100.00

Outline

Invariants

Using GP to find Invariants

Identifying Interesting Invariants

Summary

Uninteresting Invariants

Success rates look impressive: we have found most of the Daikon
invariants.

There’s something I didn’t mention - for one experiment, we found . . .

45 997 invariants!

Uninteresting Invariants

Success rates look impressive: we have found most of the Daikon
invariants.

There’s something I didn’t mention - for one experiment, we found . . .

45 997 invariants!

That’s a lot of invariants

0 200 400 600 800 1000

0
50

0
10

00
15

00
20

00
25

00
30

00

Population size, Generations

In
va

ria
nt

s
fo

un
d

abs
arraysum
arraysum loop
quicksort
quicksort recursive
quicksort partition

What are these invariants?

Some of them are:

• Tautologies.

• Syntactic equivalents of the Daikon invariants.

. . . but some of them are just plain obvious, irrelevant or
uninteresting. How can we get rid of them?

What are these invariants?

Some of them are:

• Tautologies.

• Syntactic equivalents of the Daikon invariants.

. . . but some of them are just plain obvious, irrelevant or
uninteresting. How can we get rid of them?

Using Mutation Testing

Mutation Testing

Good test data can identify small syntactic errors.

Mutation Fragility Test

Useful invariants are those general enough to be consistent with the
traces of the program yet specific enough to be inconsistent with the
trace data of (first-order) mutants.

Mutation Fragility Test

Program

Test
Harness

Trace
Data

Mutant
Trace Data

Program
Mutants

MuJava

Daikon
Front-end

ECJCandidate
Invariants

Ordered
Invariants

Fragility
Test

Trace
Generation

Mutation

SearchInvariant Filtering

Mutation Fragility Test

Each invariant i is therefore assigned a priority score, p(i):

p(i) =
1

|M|
∑
m∈M

1

|S |
∑
s∈S

c(i , s) (1)

M is the set of relevant mutants, S the set of sample data points for
a mutant, c(i , s) is 1 if the invariant is consistent with the mutant
datapoint.

We can then order the invariant list by this value.

Results: the Brief Highlights

Algorithm 1 Array sum program

i ,s := 0, 0;
do i 6= n→

i , s := i + 1, s + b[i]
od

Precondition: n ≥ 0
Postcondition: s =

∑n−1
j=0 b[j]

Loop invariant: 0 ≤ i ≤ n and s =
∑i−1

j=0 b[j]

Results: the Brief Highlights

For the ArraySum method and loop program points, the system
generated 1837 and 789 invariants respectively. Hence a programmer
must examine 2626 invariants.

When the mutant fragility metric is used to order them, only 17 must
be examined.

Results: the Brief Highlights

For the ArraySum method and loop program points, the system
generated 1837 and 789 invariants respectively. Hence a programmer
must examine 2626 invariants.

When the mutant fragility metric is used to order them, only 17 must
be examined.

Results: the Brief Highlights

Similarly, the GCD example from Gries includes an invariant that is
ranked 1 out of 3114 invariants!

Results: Summary

Method Invariant Depth Total

arraysum orig(n) ≥ 0 1837 1837

arraysum s =
∑n−1

k=0 b[k] 4 1837
arraysum.loop i ≥ 0 340 789
arraysum.loop n ≥ i 289 789

arraysum.loop s =
∑i−1

k=0 b[k] 13 789
fourtuplesort q0 ≤ q1 123 557
fourtuplesort q1 ≤ q2 136 557
fourtuplesort q2 ≤ q3 142 557
gcd orig(x) ≥ 1 1685 1685
gcd orig(y) ≥ 1 1685 1685
gcd x = gcd(orig(x), orig(y) 15 1685
gcd x ≥ 1 1228 1685
gcd x = y 135 1685
gcd gcd(x , y) = gcd(orig(x), orig(y)) 243 1685
gcd.loop x ≥ 1 358 3114
gcd.loop gcd(x , y) = gcd(orig(x), orig(y)) 691 3114
gcd.loop x = gcd(orig(x), orig(y) 1 3114

Results: Summary II

Method Invariant Depth Total

max z ≥ x 11055 11055
max z ≥ y 555 11055
max (z = x) ∨ z = y) 1172 11055
minarray n ≥ i 1506 1506
minarray ∀k, 0 ≥ k ≤ i − 1, x ≤ b[k] 22 1506
minarray x ∈ b 24 1506
minarray.loop i ≥ 1 571 2173
minarray.loop n ≥ i 571 2173
minarray.loop ∀k, 0 ≥ k ≤ i − 1, x ≤ b[k] 38 2173
minarray.loop x ∈ b 18 2173
perm x ≤ y 40 243
perm {x , y} is perm. of {y , x} 8 243

Outline

Invariants

Using GP to find Invariants

Identifying Interesting Invariants

Summary

Summary

Contributions:

• A new way of finding invariants.

• A new way of prioritising invariants.

Future Work:

• Improving search guidance.

• Applying mutation testing to Daikon output.

More at GECCO 2011. . .

For further details, see our paper (to appear at GECCO 2011):

“Searching for Invariants using Genetic Programming and
Mutation Testing.”

Sam Ratcliffe, David R. White and John A. Clark.

A paper is in preparation on using mutation testing to prioritise
invariants produced by Daikon.

	Invariants
	Using GP to find Invariants
	Identifying Interesting Invariants
	Summary

