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Introduction
• Using genetic programming to create C source 

code
– How?  Why?

• Proof of concept: gzip on graphics card
– Template based on nVidia kernel
– BNF grammar
– Fitness 

• Lessons: it can be done!

• Future GISMO:
Genetic Improvement of Software for Multiple Objectives
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GP to write source code

• When to use GP to create source code
– Small. E.g. glue between systems.
– Hard problems. Many skills needed.

– Multiple conflicting ill specified non-functional 
requirements

• GP as tool. GP tries many possible 
options. Leave software designer to 
choose between best.
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GP Automatic Coding
• Target small unit.
• Use existing system as environment 

holding evolving code.
• Use existing test suite to exercise existing 

system but record data crossing interface.
• Use inputs & answer (Oracle) to train GP.
• How to guide GP initially?
• Clean up/validate new code
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GP Automatic Coding

• Actual data into and out of module act as 
de facto specification.

• Evolved code tested to ensure it responds 
like original code to inputs.

• Recorded data flows becomes test Oracle.



Proof of Concept: gzip
• Example: compute intensive part of gzip
• Recode as parallel CUDA kernel
• Use nVidia’s examples as starting point. 
• BNF grammar keeps GP code legal, 

compliable, executable and terminates.
• Use training data gathered from original 

gzip to test evolved kernels.
• Why gzip

– Well known. Open source (C code). SIR test 
suite. Critical component isolated. Reversible.
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CUDA 2.3 Template
• nVidia supplied 67 working examples.
• Choose simplest, that does a data scan. 

(We know gzip scans data).
• Naive template too simple to give speed 

up, but shows plausibility of approach.
• NB template knows nothing of gzip

functionality. Search guided only by fitness 
function.
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gzip

• gzip scans input file looking for strings that 
occur more than once. Repeated 
sequences of bytes are replaced by short 
codes.

• n2 reduced by hashing etc. but gzip still 
does 42 million searches (sequentially).

• Demo: convert CPU hungry code to 
parallel GPU graphics card kernel code.
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Fitness

• Instrument gzip.
• Run gzip on SIR test suite. Log all inputs 

to longest_match(). 1,599,028 records.
• Select 29,315 for training GP.
• Each generation uses 100 of these.

9



Fitness
• Pop=1000. 100 kernels compiled together.

– Compilation time = 7×run time.

• Fitness testing
– first test’s data up loaded to GPU 295 GTX.

– 1000 CUDA kernels run on first test.
– Loop until all 100 tests run. 

• Answers compared with gzip’s answer. 
• performance = Σ|error| + penalty

– kernels which return 0 get high penalty.



Performance of Evolving Code
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Evolved gzip matches kernel
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Parse tree of solution 
evolved in gen 55. 
Ovals are binary decision 
rules. Red 2nd alternative 
used.



Evolved gzip matches kernel
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__device__ int kernel978(const uch *g_idata, const int strstart1, const int strstart2)
{
int thid = 0;
int pout = 0;
int pin = 0 ;
int offset = 0;
int num_elements = 258;
for (offset = 1 ; G_idata( strstart1+ pin ) == G_idata( strstart2+ pin ) ;offset ++ )

{
if(!ok()) break;
thid = G_idata( strstart2+ thid ) ;

pin = offset ;
}
return pin ;
}

Blue - fixed by template.
Black - default

Red - evolved
Grey – evolved but no impact.
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Conclusions
• Have shown possibility of using genetic 

programming to automatically re-engineer 
source code

• Problems:
– Will users accept code without formal 

guarantees?
– Evolved code passes millions of tests.
– How many tests are enough?

• First time code has been automatically 
ported to parallel CUDA kernel by an AI 
technique. 
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END

http://www.cs.ucl.ac.uk/staff/W.Langdon
/gismo/

http://www.epsrc.ac.uk/
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Discussion
• Why evolve C code

– Small. E.g. glue between systems.
– Hard problems. Many skills needed.
– Multiple conflicting ill specified non-functional requirements
– GP as tool. GP tries many possible options. Choice by designer

• Will users accept code without formal guarantees?
• Other approaches:

– Template based on nVidia kernel
– Other grammars
– Fitness, co-evolution, interactive evolution

• Other demonstrations
• GISMO: Genetic Improvement of Software for Multiple 

Objectives



scan_naive_kernel.cu
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//WBL 30 Dec 2009 $Revision: 1.11 $ Remove comments, blank lines. int g_odata, uch g_idata. Add 
strstart1 strstart2, const.
move offset and n, rename n as num_elements

WBL 14 r1.11 Remove crosstalk between threads threadIdx.x, temp -> g_idata[strstart1/strstart2]
__device__ void scan_naive(int *g_odata, const uch *g_idata, const int strstart1, const int strstart2)
{

//extern  __shared__  uch temp[];
int thid = 0; //threadIdx.x;
int pout = 0;
int pin = 1;
int offset = 0;
int num_elements = 258;
<3var> /*temp[pout*num_elements+thid]*/ = (thid > 0) ? g_idata[thid-1] : 0;
for (offset = 1; offset < num_elements; offset *= 2)
{

pout = 1 - pout;
pin  = 1 - pout;
//__syncthreads();
//temp[pout*num_elements+thid] = temp[pin*num_elements+thid];
<3var> =  g_idata[strstart+pin*num_elements+thid];
if (thid >= offset)
<3var> += g_idata[strstart+pin*num_elements+thid - offset];

}
//__syncthreads();
g_odata[threadIdx.x] = <3var>

}



BNF grammar
scan_naive_kernel.cu converted into 
grammar (169 rules) which generalises code.

Fragment of
4 page grammar

<line10-18> ::= "" | <line10-18a>
<line10-18a> ::= <line10e> <line11> <forbody> <line18>
<line11> ::= "{\n" "if(!ok()) break;\n"
<line18> ::= "}\n"
<line10e> ::= <line10> | <line10e1>
<line10e1> ::= "for (offset =" <line10.1> ";" <line10e.2> ";offset" <line10.4> ")\n"
<line10.1> ::= <line10.1.1> | <intexpr>
<line10.1.1> ::= "1" | <intconst>

<line10e.2> ::= <line10e.2.1> | <forcompexpr>
<line10e.2.1> ::= "offset" <line10.2> <line10.3> 
<line10.2> ::= "<" | <compare>
<line10.3> ::= <line10.3.1> | <intexpr>
<line10.3.1> ::= "num_elements" | <intconst>

<line10.4> ::= "*= 2" | <intmod>

<intmod> ::= "++" | <intmod2>
<intmod2> ::= "*=" <intconst>



gzip longest_match()



Number of Strings to Check
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gzip hash means mostly longest_match() has few strings to check.
Training data more evenly spread.

Log scales



Length of Strings to Check

gzip heuristics limit search ≤ 258

1% 0 bytes
0% 1 bytes
0    2 bytes

30% 3 bytes
26% 4 bytes
25% 5 bytes
14% 6 bytes



Debug
• Debugging hard
• Eventually replaced last member of evolved 

population with dummy
• Dummy reflects back input to host PC.
• Enables host to check:

– Training data has reached GPU

– Kernel has been run
– Kernel has read its inputs

– Kernel’s answer has been returned to host PC.
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Fall in number of poor programs
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71% useless constants in generation 0

7% constants
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Evolution of program complexity
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A Field Guide To 
Genetic Programming

http://www.gp-field-guide.org.uk/

Free 
PDF



The Genetic Programming Bibliography

The largest, most complete, collection of GP papers.
http://www.cs.bham.ac.uk/~wbl/biblio/

Contact W.Langdon to get your GP papers included

href link to list of your GP publications. For example mine is 
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/WilliamBLangdon.html

Search the GP Bibliography at
http://liinwww.ira.uka.de/bibliography/Ai/genetic.programming.html


