
Evolving a CUDA Kernel from an
nVidia Template

W. B. Langdon
CREST lab,

Department of Computer Science

11.5.2011

W. B. Langdon, UCL 2

Introduction
• Using genetic programming to create C source

code
– How? Why?

• Proof of concept: gzip on graphics card
– Template based on nVidia kernel
– BNF grammar
– Fitness

• Lessons: it can be done!

• Future GISMO:
Genetic Improvement of Software for Multiple Objectives

W. B. Langdon, UCL

GP to write source code

• When to use GP to create source code
– Small. E.g. glue between systems.
– Hard problems. Many skills needed.

– Multiple conflicting ill specified non-functional
requirements

• GP as tool. GP tries many possible
options. Leave software designer to
choose between best.

3

W. B. Langdon, UCL

GP Automatic Coding
• Target small unit.
• Use existing system as environment

holding evolving code.
• Use existing test suite to exercise existing

system but record data crossing interface.
• Use inputs & answer (Oracle) to train GP.
• How to guide GP initially?
• Clean up/validate new code

4

GP Automatic Coding

• Actual data into and out of module act as
de facto specification.

• Evolved code tested to ensure it responds
like original code to inputs.

• Recorded data flows becomes test Oracle.

Proof of Concept: gzip
• Example: compute intensive part of gzip
• Recode as parallel CUDA kernel
• Use nVidia’s examples as starting point.
• BNF grammar keeps GP code legal,

compliable, executable and terminates.
• Use training data gathered from original

gzip to test evolved kernels.
• Why gzip

– Well known. Open source (C code). SIR test
suite. Critical component isolated. Reversible.

W. B. Langdon, UCL

CUDA 2.3 Template
• nVidia supplied 67 working examples.
• Choose simplest, that does a data scan.

(We know gzip scans data).
• Naive template too simple to give speed

up, but shows plausibility of approach.
• NB template knows nothing of gzip

functionality. Search guided only by fitness
function.

7

W. B. Langdon, UCL

gzip

• gzip scans input file looking for strings that
occur more than once. Repeated
sequences of bytes are replaced by short
codes.

• n2 reduced by hashing etc. but gzip still
does 42 million searches (sequentially).

• Demo: convert CPU hungry code to
parallel GPU graphics card kernel code.

8

W. B. Langdon, UCL

Fitness

• Instrument gzip.
• Run gzip on SIR test suite. Log all inputs

to longest_match(). 1,599,028 records.
• Select 29,315 for training GP.
• Each generation uses 100 of these.

9

Fitness
• Pop=1000. 100 kernels compiled together.

– Compilation time = 7×run time.

• Fitness testing
– first test’s data up loaded to GPU 295 GTX.

– 1000 CUDA kernels run on first test.
– Loop until all 100 tests run.

• Answers compared with gzip’s answer.
• performance = Σ|error| + penalty

– kernels which return 0 get high penalty.

Performance of Evolving Code

11

Evolved gzip matches kernel

12

Parse tree of solution
evolved in gen 55.
Ovals are binary decision
rules. Red 2nd alternative
used.

Evolved gzip matches kernel

13

__device__ int kernel978(const uch *g_idata, const int strstart1, const int strstart2)
{
int thid = 0;
int pout = 0;
int pin = 0 ;
int offset = 0;
int num_elements = 258;
for (offset = 1 ; G_idata(strstart1+ pin) == G_idata(strstart2+ pin) ;offset ++)

{
if(!ok()) break;
thid = G_idata(strstart2+ thid) ;

pin = offset ;
}
return pin ;
}

Blue - fixed by template.
Black - default

Red - evolved
Grey – evolved but no impact.

W. B. Langdon, UCL

Conclusions
• Have shown possibility of using genetic

programming to automatically re-engineer
source code

• Problems:
– Will users accept code without formal

guarantees?
– Evolved code passes millions of tests.
– How many tests are enough?

• First time code has been automatically
ported to parallel CUDA kernel by an AI
technique.

W. B. Langdon, UCL 1515

END

http://www.cs.ucl.ac.uk/staff/W.Langdon
/gismo/

http://www.epsrc.ac.uk/

W. B. Langdon, UCL 16

Discussion
• Why evolve C code

– Small. E.g. glue between systems.
– Hard problems. Many skills needed.
– Multiple conflicting ill specified non-functional requirements
– GP as tool. GP tries many possible options. Choice by designer

• Will users accept code without formal guarantees?
• Other approaches:

– Template based on nVidia kernel
– Other grammars
– Fitness, co-evolution, interactive evolution

• Other demonstrations
• GISMO: Genetic Improvement of Software for Multiple

Objectives

scan_naive_kernel.cu

17

//WBL 30 Dec 2009 $Revision: 1.11 $ Remove comments, blank lines. int g_odata, uch g_idata. Add
strstart1 strstart2, const.
move offset and n, rename n as num_elements

WBL 14 r1.11 Remove crosstalk between threads threadIdx.x, temp -> g_idata[strstart1/strstart2]
__device__ void scan_naive(int *g_odata, const uch *g_idata, const int strstart1, const int strstart2)
{

//extern __shared__ uch temp[];
int thid = 0; //threadIdx.x;
int pout = 0;
int pin = 1;
int offset = 0;
int num_elements = 258;
<3var> /*temp[pout*num_elements+thid]*/ = (thid > 0) ? g_idata[thid-1] : 0;
for (offset = 1; offset < num_elements; offset *= 2)
{

pout = 1 - pout;
pin = 1 - pout;
//__syncthreads();
//temp[pout*num_elements+thid] = temp[pin*num_elements+thid];
<3var> = g_idata[strstart+pin*num_elements+thid];
if (thid >= offset)
<3var> += g_idata[strstart+pin*num_elements+thid - offset];

}
//__syncthreads();
g_odata[threadIdx.x] = <3var>

}

BNF grammar
scan_naive_kernel.cu converted into
grammar (169 rules) which generalises code.

Fragment of
4 page grammar

<line10-18> ::= "" | <line10-18a>
<line10-18a> ::= <line10e> <line11> <forbody> <line18>
<line11> ::= "{\n" "if(!ok()) break;\n"
<line18> ::= "}\n"
<line10e> ::= <line10> | <line10e1>
<line10e1> ::= "for (offset =" <line10.1> ";" <line10e.2> ";offset" <line10.4> ")\n"
<line10.1> ::= <line10.1.1> | <intexpr>
<line10.1.1> ::= "1" | <intconst>

<line10e.2> ::= <line10e.2.1> | <forcompexpr>
<line10e.2.1> ::= "offset" <line10.2> <line10.3>
<line10.2> ::= "<" | <compare>
<line10.3> ::= <line10.3.1> | <intexpr>
<line10.3.1> ::= "num_elements" | <intconst>

<line10.4> ::= "*= 2" | <intmod>

<intmod> ::= "++" | <intmod2>
<intmod2> ::= "*=" <intconst>

gzip longest_match()

Number of Strings to Check

20
gzip hash means mostly longest_match() has few strings to check.
Training data more evenly spread.

Log scales

Length of Strings to Check

gzip heuristics limit search ≤ 258

1% 0 bytes
0% 1 bytes
0 2 bytes

30% 3 bytes
26% 4 bytes
25% 5 bytes
14% 6 bytes

Debug
• Debugging hard
• Eventually replaced last member of evolved

population with dummy
• Dummy reflects back input to host PC.
• Enables host to check:

– Training data has reached GPU

– Kernel has been run
– Kernel has read its inputs

– Kernel’s answer has been returned to host PC.

22

Fall in number of poor programs

23
71% useless constants in generation 0

7% constants

W. B. Langdon, UCL

Evolution of program complexity

24

A Field Guide To
Genetic Programming

http://www.gp-field-guide.org.uk/

Free
PDF

The Genetic Programming Bibliography

The largest, most complete, collection of GP papers.
http://www.cs.bham.ac.uk/~wbl/biblio/

Contact W.Langdon to get your GP papers included

href link to list of your GP publications. For example mine is
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/WilliamBLangdon.html

Search the GP Bibliography at
http://liinwww.ira.uka.de/bibliography/Ai/genetic.programming.html

