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Overview

* Motivation

+ Classification-Tree Editor CTE XL Professional
» Objectives for SBST application

* Application of ACO

* Objective Function

* Test Environment

* Fully Automatic Testing of CTE XL Professional

« Conclusion, Outlook
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Motivation
* Many GUI based applications in all application
domains

» Tester's task to define, execute and evaluate
most interesting input sequences

+ Input sequences are sequences of user actions
(mouse events, keyboard events etc. such as clicks,
drag and drop, keystrokes)

» Existing tools:
— Many Capture + Replay Tools available, but limited
applicability
(e.g. B&M uses TestComplete and QF Test) — -
» Definition of test sequences S =
— by capturing user actions
— developing test scripts
» Only replay part is “automatic”

> Test suites require constant maintenance
> Labor intensive o

» Automatic generation of input sequences is quite desirable 3
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Typical Berner & Mattner Products
CTE XL Prof. MESSINA MERAN

Variant management and
model-based development
for specifications in DOORS

Systematic test case design for Virtual Integration and
specification-based testing Testing of AUTOSAR-SWC

— = |

. <= 1| Java applications e o
£ based on Eclipse
—— | | RCPand SWT
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Objectives for Application of Search-Based Testing

search for interesting test sequences

fullest possible execution of the program

functions in different contexts

in our case:

— find sequences that generate large

amounts of different call stacks
(the more CSs a sequence generates,
the more aspects of the SUT are tested
(McMaster et al.) = call trees with
many leaves most interesting for
fault detection)

— check for exceptions occurring
during the execution

* Alternatively:
— Check for memory leaks,
— Check for code coverage,
— Check for performance bottlenecks,
— Check for assertion violations
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Application of Ant Colony Optimization

Reasons for using ACO

» ACO usually applied for sequence generation problems, e.g.
TSP. Independent of mutation and crossover.

» Mutation operator problems for sequence generation

— Easy generation of infeasible sequences (not all actions
are available in all contexts)

— Neighbourhood of a sequence leads to artificial definitions

» Crossover operators introduce similar problems (exchanging
sequence parts will lead to infeasible sequences)
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Ant Colony Optimization

* lIdea:
— C = component set (here: C = set of feasible actions)
— Generate trails (sequences of user actions) by selecting
components c; e C considering pheromone values p;
» Pseudo random proportionate selection
— Assess trails (# Call Tree Leaves)
— Reward components c; that appear in “good” trails by
increasing their pheromones p;
+ After each generation
— Only top k trails are considered
- p/'=p,-1-a)+a-r, where & is the evaporation /
learning rate and r; the average reward of the trails that c;
appeared in
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Objective Function

For each generated sequence of user actions the size of its call tree
is calculated by the number of leaves: # CT leaves.

Call Trees for multiple threads are combined into one call tree.
Redundancies are eliminated.
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Test Environment

Optimization
Component

execute available call tree
action actions
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Test Environment

Optimization Component

implements the search (ACO)

maintains the pheromones for
each named action according to
call trees

selects most promising actions
analyse exceptions

iR
. .

Java Agent

* independent of source code
« attaches to SUT

* instruments bytecode to obtain
call tree (includes third party
modules)

» scans the GUI to create a widget
tree for each execution state

» defines unique identifiers for
each action

* executes selected actions
« returns overall call tree
* monitors exceptions
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Test Environment — Sequence Generation

Determine defined
actions for widgets

derive set of
interesting
actions

start SUT
and attach
JavaAgent

A\

byte-code
instrumentation
of SUT

scan GUI
and create
widget tree

pick an
action

A4

stop SUT
and dump
call tree

execute
action

yes

1o sequence
ength ==n2
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Experiment

ACO Run Random Run

160000 160000

140000 - 140000 -

120000 - 120000 [
100000 100000 |

80000

#MCS

80000 -

60000 - 60000 |

40000 40000 |-

20000 20000

0
o 1000 2000 3000 4000 5000 600C o

o 1000 2000 3000 4000 5000 6000
Soquence

Sequence

desc |k | a | p |popsize|generations|seqlength| pheromone| max |duration
default #CS

aco |15|0.3(0.7) 20 300 10 30000 144082 | 125 h
random|all(0.0|0.0] 20 300 10 1 91587 | 125 h
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Conclusion

* High demand for automatic GUI testing in industrial practice
» Typical application: CTE XL Professional (Eclipse RCP, SWT)

» Functional testing for logical errors difficult, because guidance to unknown
logical errors hard to formalize

» Functional testing for exceptions, memory leaks, ... possible

» Test environment allows to
— determine all possible user actions in each execution state
— selects most interesting actions
— assesses overall quality of test sequences by analyzing the call tree
— generates long test sequences with most highest variety

» Evaluation
— Application of search successfull
— Initial experiments confirm better performance than random testing
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Outlook

» Experiments on generating entire test suites to be performed
» Possible improvement of algorithm to be more explorative

Evaluate more advanced objective functions (not only number of call
tree leaves)

Increase efficiency

— Sequence generation is expensive =» parallelization of search
and test

— ACO good choice? = disregards linkage among actions (context
of actions not considered for pheromone value calculation)

Fault sensitivity of generated sequences = empirical evaluation




