‘J #i l‘l‘_ i i S e é \‘
herner&mattner pk 2 ﬁ&' . ‘xé‘]

optimizing youl 4N

A Metaheuristic Approach to Test Sequence
Generation for GUI-based Applications

Sebastian Bauersfeld, Dr. Joachim Wegener

Berner & Mattner Systemtechnik GmbH !
- —— — _.
- seamnfury Rarvoced e .

> ?‘I_ﬂi ﬂ-{ 9—9'

herner&mattner p&"’")

optimizing you, elopment LA

Overview

* Motivation

+ Classification-Tree Editor CTE XL Professional
» Objectives for SBST application

* Application of ACO

* Objective Function

* Test Environment

* Fully Automatic Testing of CTE XL Professional

« Conclusion, Outlook

—

e g i

E 2
berner&mattner pé.' i H
optimizing your development W8 (N
Motivation
* Many GUI based applications in all application
domains

» Tester's task to define, execute and evaluate
most interesting input sequences

+ Input sequences are sequences of user actions
(mouse events, keyboard events etc. such as clicks,
drag and drop, keystrokes)

» Existing tools:
— Many Capture + Replay Tools available, but limited
applicability
(e.g. B&M uses TestComplete and QF Test) — -
» Definition of test sequences S =
— by capturing user actions
— developing test scripts
» Only replay part is “automatic”

> Test suites require constant maintenance
> Labor intensive o

» Automatic generation of input sequences is quite desirable 3

r*,“':ﬁ‘

(i
- ;
b o
o ;‘-"

berner &mattner Fé A

optimizing your development W8

Typical Berner & Mattner Products
CTE XL Prof. MESSINA MERAN

Variant management and
model-based development
for specifications in DOORS

Systematic test case design for Virtual Integration and
specification-based testing Testing of AUTOSAR-SWC

— = |

. <= 1| Java applications e o
£ based on Eclipse
—— | | RCPand SWT

berner&mattner p#”*')

optimizing your development = W i

CTE XL Prof.

2 = =2
R R §- Elbce
TG | | —|
[ofoutrce | & stimie e | & gostin e e lcie | & tdvemanmaie | & "Gt dn 6 =0
E]

Drawing area for
classification trees

“sowmmancd
vaick:

AT
corvmibe e S L
| »

Combination table for
test case specifications

LiL

B sccs Panel for establishing

—— RM connections

.*Dwr!

5
& o Tir Q. LA ST . el
[S R I 1. s

berners mattner gk ﬂ&o { JE . 99
I ——

Objectives for Application of Search-Based Testing

search for interesting test sequences

fullest possible execution of the program

functions in different contexts

in our case:

— find sequences that generate large

amounts of different call stacks
(the more CSs a sequence generates,
the more aspects of the SUT are tested
(McMaster et al.) = call trees with
many leaves most interesting for
fault detection)

— check for exceptions occurring
during the execution

* Alternatively:
— Check for memory leaks,
— Check for code coverage,
— Check for performance bottlenecks,
— Check for assertion violations

T W o e
2 ol ot Jall . OKE
berner&mattner yb (i) 2 . =]

Application of Ant Colony Optimization

Reasons for using ACO

» ACO usually applied for sequence generation problems, e.g.
TSP. Independent of mutation and crossover.

» Mutation operator problems for sequence generation

— Easy generation of infeasible sequences (not all actions
are available in all contexts)

— Neighbourhood of a sequence leads to artificial definitions

» Crossover operators introduce similar problems (exchanging
sequence parts will lead to infeasible sequences)

& o Tis @ ; A I <'-‘ y
el R ik
berner&mattner b (1) A i \ =]

Ant Colony Optimization

* lIdea:
— C = component set (here: C = set of feasible actions)
— Generate trails (sequences of user actions) by selecting
components c; e C considering pheromone values p;
» Pseudo random proportionate selection
— Assess trails (# Call Tree Leaves)
— Reward components c; that appear in “good” trails by
increasing their pheromones p;
+ After each generation
— Only top k trails are considered
- p/'=p,-1-a)+a-r, where & is the evaporation /
learning rate and r; the average reward of the trails that c;
appeared in

berner &mattner #FE’*'-'«) Iﬁ ot ‘\“\g

optimizing your development = W i

szﬁ: N ﬂ« F

Objective Function

For each generated sequence of user actions the size of its call tree
is calculated by the number of leaves: # CT leaves.

Call Trees for multiple threads are combined into one call tree.
Redundancies are eliminated.

o;j o ﬁi RIS “’{ F

berner &mattner pk i) Iﬁ \‘\‘x\g
optimizing your development LAY

Test Environment

Optimization
Component

execute available call tree
action actions

& o Tair Q.

B 2
berner&mattner Fk"r £
optimizing your development W8 (N

Test Environment

Optimization Component

implements the search (ACO)

maintains the pheromones for
each named action according to
call trees

selects most promising actions
analyse exceptions

iR
. .

Java Agent

* independent of source code
« attaches to SUT

* instruments bytecode to obtain
call tree (includes third party
modules)

» scans the GUI to create a widget
tree for each execution state

» defines unique identifiers for
each action

* executes selected actions
« returns overall call tree
* monitors exceptions

7 T T

E 2
berner&mattner ,-E"T i
optimizing your development] Pl

W 5‘_";
C Jdl . asa

Test Environment — Sequence Generation

Determine defined
actions for widgets

derive set of
interesting
actions

start SUT
and attach
JavaAgent

A\

byte-code
instrumentation
of SUT

scan GUI
and create
widget tree

pick an
action

A4

stop SUT
and dump
call tree

execute
action

yes

1o sequence
ength ==n2

berner &mattner A
optimizing your development = WEY <0

[CTE CTE XL Professional =10 x|
Fle Edi - Search Window Help

| I S

£= outine £3 =0

An autine is not avalable. Active Wldget Tree

} (disabled)

Search

(R

[Properties &3
Propert

&~ &7’.{.""

berner &mattner J

fl
optimizing your development W

CTE CTE XL Professional
Fie Edit Search Window Help

Open. o

Close. Cirla
Close Al il S

Save cilis
Save Az
Save Al Gl St 45
Rzvert:
PHIRE, .
Pags Setup. .
g Import. .
i Expart...

Ex

DropDown
Menu

1 Properties &2

Propert | value

berner & mattner

optimizing your development

[cTE CTE X1 Professional

File Edt - Search Ufindow Help

| I

‘An outline is nok availablz,

CTENew Cte Diagram i
Create Cte Diagram
Specfy Fle name For new CTE fil,

File:

[Cr\pokumente und Einstellungen sebbatdeFaul. cte

[Properties E2

Propert;

| alue

w =0

berner &mattner
optimizing your development

T default5.cte - CTE L Professional

Fle Edt Diagram -Search Took Window Help

=8|
[| @ [~ e o e =
T s A |
B2 outine 23 dofaulSct s
(Crorame) 5|
ek noname_0
© noname 1
@ nonane 2
Fo noname_2
& Add Cassiication 7
5 Add Compostion 5

K]

Zis

Define Parent

Fie

Edit &

Format

& Tags

@ Change type

Sho Subtree

] show Properties Vi

5 Properties 53

@ Class noname_1

Property value
Core
Chicren
Appearance)
Name.

Tree
Figures

HMCS

‘J ; !Jl" (o) . e é pe
berner &mattner pk”" ﬁi - X;&]

optimizing your development 1Y

Experiment

ACO Run Random Run

160000 160000

140000 - 140000 -

120000 - 120000 [
100000 100000 |

80000

#MCS

80000 -

60000 - 60000 |

40000 40000 |-

20000 20000

0
o 1000 2000 3000 4000 5000 600C o

o 1000 2000 3000 4000 5000 6000
Soquence

Sequence

desc |k | a | p |popsize|generations|seqlength| pheromone| max |duration
default #CS

aco |15|0.3(0.7) 20 300 10 30000 144082 | 125 h
random|all(0.0|0.0] 20 300 10 1 91587 | 125 h

\J # J‘P < = é “
berner &mattner p&"’" ﬁ& & x@\x]

optimizing your development o

Conclusion

* High demand for automatic GUI testing in industrial practice
» Typical application: CTE XL Professional (Eclipse RCP, SWT)

» Functional testing for logical errors difficult, because guidance to unknown
logical errors hard to formalize

» Functional testing for exceptions, memory leaks, ... possible

» Test environment allows to
— determine all possible user actions in each execution state
— selects most interesting actions
— assesses overall quality of test sequences by analyzing the call tree
— generates long test sequences with most highest variety

» Evaluation
— Application of search successfull
— Initial experiments confirm better performance than random testing

T PaE A, . B

il e S
b M - A
Outlook

» Experiments on generating entire test suites to be performed
» Possible improvement of algorithm to be more explorative

Evaluate more advanced objective functions (not only number of call
tree leaves)

Increase efficiency

— Sequence generation is expensive =» parallelization of search
and test

— ACO good choice? = disregards linkage among actions (context
of actions not considered for pheromone value calculation)

Fault sensitivity of generated sequences = empirical evaluation

