
1

A Metaheuristic Approach to Test Sequence

Generation for GUI-based Applications

Sebastian Bauersfeld, Dr. Joachim Wegener

Berner & Mattner Systemtechnik GmbH

22

Overview

• Motivation

• Classification-Tree Editor CTE XL Professional

• Objectives for SBST application

• Application of ACO

• Objective Function

• Test Environment

• Fully Automatic Testing of CTE XL Professional

• Conclusion, Outlook

33

Motivation

• Many GUI based applications in all application
domains

• Tester’s task to define, execute and evaluate
most interesting input sequences

• Input sequences are sequences of user actions
(mouse events, keyboard events etc. such as clicks,
drag and drop, keystrokes)

• Existing tools:
– Many Capture + Replay Tools available, but limited

applicability
(e.g. B&M uses TestComplete and QF Test)

• Definition of test sequences
– by capturing user actions
– developing test scripts

• Only replay part is “automatic”

� Test suites require constant maintenance
� Labor intensive

� Automatic generation of input sequences is quite desirable

4

MERAN

Systematic test case design for

specification-based testing

Variant management and

model-based development

for specifications in DOORS

CTE XL Prof.

Typical Berner & Mattner Products

MESSINA

Virtual Integration and

Testing of AUTOSAR-SWC

Java applications

based on Eclipse

RCP and SWT

5

CTE XL Prof.

Drawing area for

classification trees

Combination table for

test case specifications

Panel for establishing

RM connections

66

Objectives for Application of Search-Based Testing

• search for interesting test sequences

• fullest possible execution of the program
functions in different contexts

• in our case:

– find sequences that generate large
amounts of different call stacks
(the more CSs a sequence generates,
the more aspects of the SUT are tested
(McMaster et al.) ⇒ call trees with
many leaves most interesting for
fault detection)

– check for exceptions occurring
during the execution

• Alternatively:

– Check for memory leaks,

– Check for code coverage,

– Check for performance bottlenecks,

– Check for assertion violations

– …

7

Application of Ant Colony Optimization

Reasons for using ACO

• ACO usually applied for sequence generation problems, e.g.
TSP. Independent of mutation and crossover.

• Mutation operator problems for sequence generation

– Easy generation of infeasible sequences (not all actions
are available in all contexts)

– Neighbourhood of a sequence leads to artificial definitions

• Crossover operators introduce similar problems (exchanging
sequence parts will lead to infeasible sequences)

7

88

Ant Colony Optimization

• Idea:

– C = component set (here: C = set of feasible actions)

– Generate trails (sequences of user actions) by selecting
components considering pheromone values pi

• Pseudo random proportionate selection

– Assess trails (# Call Tree Leaves)

– Reward components ci that appear in “good” trails by
increasing their pheromones pi

• After each generation

– Only top k trails are considered

– where is the evaporation /
learning rate and r

i
the average reward of the trails that c

i

appeared in

c i ∈C

iii rpp ⋅+−⋅= αα)1(' α

9

Objective Function

For each generated sequence of user actions the size of its call tree

is calculated by the number of leaves: # CT leaves.

Call Trees for multiple threads are combined into one call tree.

Redundancies are eliminated.

1010

Test Environment

0 nn+1

t t+1

TCP/IP

11

Test Environment

11

• independent of source code

• attaches to SUT

• instruments bytecode to obtain

call tree (includes third party

modules)

• scans the GUI to create a widget

tree for each execution state

• defines unique identifiers for

each action

• executes selected actions

• returns overall call tree

• monitors exceptions

Optimization Component Java Agent

• implements the search (ACO)

• maintains the pheromones for

each named action according to
call trees

• selects most promising actions

• analyse exceptions

12

Test Environment – Sequence Generation

12

Determine defined

actions for widgets

1313

Active Widget Tree

1414

Active Widget Tree

1515

1616

17

Experiment

ACO Run

17

Random Run

1818

Conclusion

• High demand for automatic GUI testing in industrial practice

• Typical application: CTE XL Professional (Eclipse RCP, SWT)

• Functional testing for logical errors difficult, because guidance to unknown
logical errors hard to formalize

• Functional testing for exceptions, memory leaks, … possible

• Test environment allows to

– determine all possible user actions in each execution state

– selects most interesting actions

– assesses overall quality of test sequences by analyzing the call tree

– generates long test sequences with most highest variety

• Evaluation

– Application of search successfull

– Initial experiments confirm better performance than random testing

1919

Outlook

• Experiments on generating entire test suites to be performed

• Possible improvement of algorithm to be more explorative

• Evaluate more advanced objective functions (not only number of call
tree leaves)

• Increase efficiency

– Sequence generation is expensive � parallelization of search
and test

– ACO good choice? � disregards linkage among actions (context
of actions not considered for pheromone value calculation)

• Fault sensitivity of generated sequences � empirical evaluation

