
1

Automating the Generation of

Mutation-based Test Cases

Mike Papadakis

Department of Informatics
Athens University of Economics and Business

2

Mutation Testing

 White-box, fault-based testing technique

 Considered as one of the most effective techniques at

detecting faults

 Produces faulty program versions

 Aim: find test cases that distinguish the original

from fault-mutant program versions

 Assessing test adequacy

 Dead mutant ratio (Distinguished outputs)

Mutants Equivalent of No. - Mutants of No.

Mutants Dead of No.
 ScoreMutation 

3

Search Based Testing

 Automatic generation of test cases

 Test cases able to kill the introduced mutants

 Formulate test generation to a search program

 Use of search based optimization techniques

 Dynamic program execution

 Fitness function

 Hill Climbing (AVM)

 Quite effective in structural testing

 Repeatedly adjusts the program inputs

4

 In order to kill a mutant, tests must

 Joint satisfaction (Reach && Infect && Propagate)

Stage 1: Reach

the mutant

Stage 2: infect

the program state

Stage 3:

propagate the

infected state

Killing Mutants

5

Killing Mutants (Search Based)

 Measure the closeness of reaching a mutant

 Measure mutation distance

 Closeness of weakly killing the targeted mutant. Mutant

necessity condition: Original expression ≠ Mutated

expression

 Use simplified necessity fitness for improved performance

 Measure Predicate mutation distance

 Closeness of making changes on the mutant and original

program predicates

 Approximate Sufficiency condition

 Measure the closeness of reaching specific program nodes

(likely to expose mutants)

6

Fitness function (reaching a mutant)

 approach level

 The number of control dependent nodes missed

 branch distance

Expression True Branch False Branch

a == b abs(a - b) a == b?k : 0

a != b a != b? 0 : k abs (a != b?a - b : 0)

a < b abs (a < b?0 : a - b + k) abs (a < b?a - b + k : 0)

a <= b abs (a <= b?0 : a - b) abs (a <= b?a - b : 0)

a > b abs (a > b?0 : a - b + k) abs (a > b?a - b + k : 0)

a >= b abs (a >= b?0 : a - b) abs (a >= b?a - b : 0)

a || b min[fit(a), fit(b)] fit(a) + fit(b)

a && b fit(a) + fit(b) min[fit(a), fit(b)]

7

Fitness function (mutation distance)

Operator Original expression Mutant Fitness

Relational

a > b

a >= b: abs(a-b)

a < b: k

a <= b: 0

a != b: abs(a-b+k)

a == b: abs(a-b)

true: abs(a-b)

false: abs(a-b+k)

a >= b

a > b: abs(a-b)

a < b: 0

a <= b: k

a != b: abs(a-b)

a == b: abs(a-b+k)

true: abs(a-b+k)

false: abs(a-b)

a < b

a > b: k

a >= b: 0

a <= b: abs(a-b)

a != b: abs(a-b+k)

a == b: abs(a-b)

true: abs(a-b)

false: abs(a-b+k)

a <= b

a > b: 0

a >= b: k

a < b: abs(a-b)

a != b: abs(a-b)

a == b: abs(a-b+k)

true: abs(a-b+k)

false: abs(a-b)

a != b

a > b: abs(a-b+k)

a >= b: abs(a-b)

a < b: abs(a-b+k)

a <= b: abs(a-b)

a == b: 0

true: abs(a-b)

false: k

a == b

a > b: abs(a - b)

a >= b:abs(a-b+k)

a < b: abs(a - b)

a <= b:abs(a-b+k)

a != b: 0

true: k

false: abs(a-b)

8

Fitness function (mutation distance)

Example

(a > b) ≠ (a >= b)

If (a == b) then

a > b -> false

a >= b -> true

else

(a > b) == (a >= b)

Mutation distance

abs(a - b)

9

Fitness function (mutation distance)

Operator Original expression Mutant Fitness

Arithmetic

a + b

a - b:k

a * b:k

a / b:k

a % b:k

a:k

b:k

a – b

a + b:k

a * b:k

a / b:k

a % b:k

a:k

b:k

a * b

a + b:k

a - b:k

a / b:k

a % b:k

a:k

b:k

a / b

a + b:k

a – b:k

a * b:k

a % b:k

a:k

b:k

a % b

a + b:k

a – b:k

a * b:k

a / b:k

a:k

b:k

Absolute a
abs(a):abs(a+k) -abs (a):abs(a)

0:abs(a)

Logical

a && b

a||b:min[Tfit(a)+Ffit(b),

Ffit(a)+Tfit(b)]

a:Tfit(a)+Ffit(b)

b:Ffit(a)+Tfit(b)

true:min [Ffit(a), Ffit(b)]

false:Tfit(a)+Tfit(b)

a || b

a&&b:min[Tfit(a)+

Ffit(b), Ffit(a)+Tfit(b)]

a:Ffit(a)+Tfit(b)

b:Tfit(a)+Ffit(b)

true:Ffit(a)+Ffit(b)

false:min[Tfit(a), Tfit(b)]

10

Fitness function

 Reach Distance

 2 * approach level + normalized (branch distance)

 Mutation Distance

 normalized (mutation distance) + normalized (pdm)

 pmd = min[Tfit(O) + Ffit (M), Tfit (M) + Ffit (O)]

 (Original pred == T && Mutated pred == F) || (Original pred

== F && Mutated pred == T)

 Impact Distance

 approach level + normalized (branch distance)

11

Fitness function (Impact Distance)

 Observation

 Mutants are exposed when they impact some

specific program nodes.

 Targeting some nodes of the mutant program when

having mutants weakly but not strongly killed is likely

to impact these nodes.

 Incremental search (reach, infect, propagate)

 Ranks the program nodes according to their

ability to reveal mutants

 Computes a ratio of the killed over the live mutants

when they are impacted.

12

Dynamic approach level

 Approximation of the approach level based on

dynamic program execution

 Intersection of all the nodes that are contained in all

the encountered execution paths that reach a targeted

node.

 Mechanism for producing new tests based on the

combined use of the encountered execution paths.

 Record the program execution paths encountered

during the search process

 Many program paths are encountered collaterally

13

Case Study

 Search based (Strong mutation)

 Comparison of the Random, Reach, Infect and

Impact fitness.

 Comparison when using Dynamic approach

level

 ABS, AOR, ROR and LCR operators

 Hill climbing approach (AVM)

 Maximum 50,000 fitness evaluations per

introduced mutant

14

Search Based Study-Results

15

Search Based Study-Results

16

Search Based Study-Results

17

Search Based Study-Results

18

Search Based Study-Results

 Fitness functions results

 No. of killed mutants per fitness

Test

Subject
Random Reach Infect Impact DReach DInfect DImpact

Triangle 102.2 94 103 103.4 96.4 103 103.2

Tritype 125.6 173.8 178.4 184.8 205.4 210.4 223

Triangle 102 131 144.4 146.2 143.8 148.6 185

Remainder 205.8 201.4 206 206 201.4 206 206

Callendar 189 165 195.2 193.2 168.6 198.8 200

Cancel 712.6 686.2 732.2 732.6 709.26 732 733.2

FourBalls 187.2 183.2 185 186.8 181 185.8 188

Quadratic 59.07 58 61.22 61.8 58 60.6 63

Conclusion

Mutation based test case generation

 Use of the AVM method for killing mutants

 Better fitness than previous attempts

 Approximation of the mutant sufficiency condition

Dynamic approach level improves the

effectiveness of all the utilized fitness functions

 Helps overcoming difficulties of the static

approach level

 Helps generating test cases based on the

existing ones or previously produced.
19

Future Directions

New fitness functions

 Approximate sufficient condition

 Equivalent mutants

Dynamic identification of (likely to be)

equivalent mutants

Use dynamic approach level for regression

testing

Efficiently generate new tests based on the

existing ones
20

Thank you for your attention…

Questions ?

Contact

Mike Papadakis mpapad@aueb.gr

21

mailto:mpapad@aueb.gr

22

References

 Mike Papadakis and Nicos Malevris. "Automatic Mutation based Test

Data Generation”, in Annual conference on Genetic and evolutionary

computation, (GECCO’11), Dublin, Ireland, July 2011. (Poster

publication)

 Mike Papadakis and Nicos Malevris. "Automatic Mutation Test Case

Generation Via Dynamic Symbolic Execution", in 21st International

Symposium on Software Reliability Engineering (ISSRE'10), San Jose,

California, USA, November 2010.

 Mike Papadakis and Nicos Malevris. “Metallaxis an Automated

Framework for Weak Mutation", Technical Report,

http://pages.cs.aueb.gr/~mpapad/TR/MetallaxisTR.pdf.

 Mike Papadakis and Nicos Malevris. "Automatically Performing Weak

Mutation with the Aid of: Symbolic Execution, Concolic and Search

Based Testing”, in Software Quality Journal. (to appear)

http://pages.cs.aueb.gr/~mpapad/TR/MetallaxisTR.pdf

