
1

Automating the Generation of

Mutation-based Test Cases

Mike Papadakis

Department of Informatics
Athens University of Economics and Business

2

Mutation Testing

 White-box, fault-based testing technique

 Considered as one of the most effective techniques at

detecting faults

 Produces faulty program versions

 Aim: find test cases that distinguish the original

from fault-mutant program versions

 Assessing test adequacy

 Dead mutant ratio (Distinguished outputs)

Mutants Equivalent of No. - Mutants of No.

Mutants Dead of No.
 ScoreMutation

3

Search Based Testing

 Automatic generation of test cases

 Test cases able to kill the introduced mutants

 Formulate test generation to a search program

 Use of search based optimization techniques

 Dynamic program execution

 Fitness function

 Hill Climbing (AVM)

 Quite effective in structural testing

 Repeatedly adjusts the program inputs

4

 In order to kill a mutant, tests must

 Joint satisfaction (Reach && Infect && Propagate)

Stage 1: Reach

the mutant

Stage 2: infect

the program state

Stage 3:

propagate the

infected state

Killing Mutants

5

Killing Mutants (Search Based)

 Measure the closeness of reaching a mutant

 Measure mutation distance

 Closeness of weakly killing the targeted mutant. Mutant

necessity condition: Original expression ≠ Mutated

expression

 Use simplified necessity fitness for improved performance

 Measure Predicate mutation distance

 Closeness of making changes on the mutant and original

program predicates

 Approximate Sufficiency condition

 Measure the closeness of reaching specific program nodes

(likely to expose mutants)

6

Fitness function (reaching a mutant)

 approach level

 The number of control dependent nodes missed

 branch distance

Expression True Branch False Branch

a == b abs(a - b) a == b?k : 0

a != b a != b? 0 : k abs (a != b?a - b : 0)

a < b abs (a < b?0 : a - b + k) abs (a < b?a - b + k : 0)

a <= b abs (a <= b?0 : a - b) abs (a <= b?a - b : 0)

a > b abs (a > b?0 : a - b + k) abs (a > b?a - b + k : 0)

a >= b abs (a >= b?0 : a - b) abs (a >= b?a - b : 0)

a || b min[fit(a), fit(b)] fit(a) + fit(b)

a && b fit(a) + fit(b) min[fit(a), fit(b)]

7

Fitness function (mutation distance)

Operator Original expression Mutant Fitness

Relational

a > b

a >= b: abs(a-b)

a < b: k

a <= b: 0

a != b: abs(a-b+k)

a == b: abs(a-b)

true: abs(a-b)

false: abs(a-b+k)

a >= b

a > b: abs(a-b)

a < b: 0

a <= b: k

a != b: abs(a-b)

a == b: abs(a-b+k)

true: abs(a-b+k)

false: abs(a-b)

a < b

a > b: k

a >= b: 0

a <= b: abs(a-b)

a != b: abs(a-b+k)

a == b: abs(a-b)

true: abs(a-b)

false: abs(a-b+k)

a <= b

a > b: 0

a >= b: k

a < b: abs(a-b)

a != b: abs(a-b)

a == b: abs(a-b+k)

true: abs(a-b+k)

false: abs(a-b)

a != b

a > b: abs(a-b+k)

a >= b: abs(a-b)

a < b: abs(a-b+k)

a <= b: abs(a-b)

a == b: 0

true: abs(a-b)

false: k

a == b

a > b: abs(a - b)

a >= b:abs(a-b+k)

a < b: abs(a - b)

a <= b:abs(a-b+k)

a != b: 0

true: k

false: abs(a-b)

8

Fitness function (mutation distance)

Example

(a > b) ≠ (a >= b)

If (a == b) then

a > b -> false

a >= b -> true

else

(a > b) == (a >= b)

Mutation distance

abs(a - b)

9

Fitness function (mutation distance)

Operator Original expression Mutant Fitness

Arithmetic

a + b

a - b:k

a * b:k

a / b:k

a % b:k

a:k

b:k

a – b

a + b:k

a * b:k

a / b:k

a % b:k

a:k

b:k

a * b

a + b:k

a - b:k

a / b:k

a % b:k

a:k

b:k

a / b

a + b:k

a – b:k

a * b:k

a % b:k

a:k

b:k

a % b

a + b:k

a – b:k

a * b:k

a / b:k

a:k

b:k

Absolute a
abs(a):abs(a+k) -abs (a):abs(a)

0:abs(a)

Logical

a && b

a||b:min[Tfit(a)+Ffit(b),

Ffit(a)+Tfit(b)]

a:Tfit(a)+Ffit(b)

b:Ffit(a)+Tfit(b)

true:min [Ffit(a), Ffit(b)]

false:Tfit(a)+Tfit(b)

a || b

a&&b:min[Tfit(a)+

Ffit(b), Ffit(a)+Tfit(b)]

a:Ffit(a)+Tfit(b)

b:Tfit(a)+Ffit(b)

true:Ffit(a)+Ffit(b)

false:min[Tfit(a), Tfit(b)]

10

Fitness function

 Reach Distance

 2 * approach level + normalized (branch distance)

 Mutation Distance

 normalized (mutation distance) + normalized (pdm)

 pmd = min[Tfit(O) + Ffit (M), Tfit (M) + Ffit (O)]

 (Original pred == T && Mutated pred == F) || (Original pred

== F && Mutated pred == T)

 Impact Distance

 approach level + normalized (branch distance)

11

Fitness function (Impact Distance)

 Observation

 Mutants are exposed when they impact some

specific program nodes.

 Targeting some nodes of the mutant program when

having mutants weakly but not strongly killed is likely

to impact these nodes.

 Incremental search (reach, infect, propagate)

 Ranks the program nodes according to their

ability to reveal mutants

 Computes a ratio of the killed over the live mutants

when they are impacted.

12

Dynamic approach level

 Approximation of the approach level based on

dynamic program execution

 Intersection of all the nodes that are contained in all

the encountered execution paths that reach a targeted

node.

 Mechanism for producing new tests based on the

combined use of the encountered execution paths.

 Record the program execution paths encountered

during the search process

 Many program paths are encountered collaterally

13

Case Study

 Search based (Strong mutation)

 Comparison of the Random, Reach, Infect and

Impact fitness.

 Comparison when using Dynamic approach

level

 ABS, AOR, ROR and LCR operators

 Hill climbing approach (AVM)

 Maximum 50,000 fitness evaluations per

introduced mutant

14

Search Based Study-Results

15

Search Based Study-Results

16

Search Based Study-Results

17

Search Based Study-Results

18

Search Based Study-Results

 Fitness functions results

 No. of killed mutants per fitness

Test

Subject
Random Reach Infect Impact DReach DInfect DImpact

Triangle 102.2 94 103 103.4 96.4 103 103.2

Tritype 125.6 173.8 178.4 184.8 205.4 210.4 223

Triangle 102 131 144.4 146.2 143.8 148.6 185

Remainder 205.8 201.4 206 206 201.4 206 206

Callendar 189 165 195.2 193.2 168.6 198.8 200

Cancel 712.6 686.2 732.2 732.6 709.26 732 733.2

FourBalls 187.2 183.2 185 186.8 181 185.8 188

Quadratic 59.07 58 61.22 61.8 58 60.6 63

Conclusion

Mutation based test case generation

 Use of the AVM method for killing mutants

 Better fitness than previous attempts

 Approximation of the mutant sufficiency condition

Dynamic approach level improves the

effectiveness of all the utilized fitness functions

 Helps overcoming difficulties of the static

approach level

 Helps generating test cases based on the

existing ones or previously produced.
19

Future Directions

New fitness functions

 Approximate sufficient condition

 Equivalent mutants

Dynamic identification of (likely to be)

equivalent mutants

Use dynamic approach level for regression

testing

Efficiently generate new tests based on the

existing ones
20

Thank you for your attention…

Questions ?

Contact

Mike Papadakis mpapad@aueb.gr

21

mailto:mpapad@aueb.gr

22

References

 Mike Papadakis and Nicos Malevris. "Automatic Mutation based Test

Data Generation”, in Annual conference on Genetic and evolutionary

computation, (GECCO’11), Dublin, Ireland, July 2011. (Poster

publication)

 Mike Papadakis and Nicos Malevris. "Automatic Mutation Test Case

Generation Via Dynamic Symbolic Execution", in 21st International

Symposium on Software Reliability Engineering (ISSRE'10), San Jose,

California, USA, November 2010.

 Mike Papadakis and Nicos Malevris. “Metallaxis an Automated

Framework for Weak Mutation", Technical Report,

http://pages.cs.aueb.gr/~mpapad/TR/MetallaxisTR.pdf.

 Mike Papadakis and Nicos Malevris. "Automatically Performing Weak

Mutation with the Aid of: Symbolic Execution, Concolic and Search

Based Testing”, in Software Quality Journal. (to appear)

http://pages.cs.aueb.gr/~mpapad/TR/MetallaxisTR.pdf

