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Motivation for theoretical analysis of EAs

EAs have many attractive features

I ease of implementation

I applicable in a wide range of domains

I results often competitive with traditional techniques,

but the understanding of how EAs really work is incomplete

I can be highly sensitive to choice of parameter settings

I experimental parameter tuning expensive

I in most cases, run EA and see what happens

I ...



Traditional Investigation of EAs

Run algorithm(s) on \real world" problem instance(s).
Analyse results with some statistical methodology.

How representative are the results?

I Can we make any guarantee about performance?

I What happens on other instances?

I What happens for larger instance sizes?

I What happens for other parameter settings?

How can the results be explained?

I Why does/does not the algorithm work?

I Can the algorithm be improved?

=) Why not attempt the well established methodology
that exists for analysing classical algorithms?



Evolutionary Algorithms are Algorithms

Criteria for evaluating algorithms

1. Correctness.
I Does the algorithm always give the correct output?

2. Computational Complexity.
I How much computational resources does

the algorithm require to solve the problem?

Same criteria also applicable to search heuristics

1. Correctness.
I Discover global optimum in �nite time?

2. Computational Complexity.
I Time (number of function evaluations)

most relevant computational resource.



Worst Case Computational Complexity

\real world" instance hard instance

runtime

instances

\Real world" runtime: Runtime on \real world" instances

I Are these instances still relevant in 10 years? In 100 years?

Average case runtime: Runtime averaged over instances

I What is an average input (e.g. average FSM)?

Worst case runtime: Runtime on hardest instance

I Strong guarantee about performance of an algorithm.

I Lower bounds obtained by analysing runtime
on speci�c hard problem instance.



Computational Complexity of Search Heuristics

0 50 100

0
10

00
0

Instance Size

R
un

tim
e

Prediction of resources needed for a given instance.
Usually runtime as function of instance size.
Number of �tness evaluations before �nding optimum.
I Exponential runtime =) Ine�cient algorithm.
I Polynomial runtime =) \E�cient" algorithm.

Asymptotic notation hides \unimportant" details about
runtime.



Search Heuristic are Randomised Algorithms

E[Tn] f(n)

E[Tn]
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n
Instance Size

Search heuristics depend on random inputs

I Runtime di�ers between runs.

Expected runtime

I Runtime averaged over possible random inputs.

Success probability

I Probability of �nishing within a speci�ed time f(n).



Research Objectives and Strategy

Runtime analysis of search heuristics on software testing

I Understand behaviour of algorithm

I Runtime impact of operators and parameter settings

I Runtime impact of problem instance characteristics

Research strategy

I Start by analysing simple problems and algorithms

I Proceed with more complex scenarios

I Find appropriate mathematical techniques on the way



Conformance testing and UIOs

Conformance testing involves the state veri�cation problem,
which can be solved using unique input output (UIO)
sequences.
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De�nition
A unique input output sequence

for a state s is a sequence x st.

I 8t 6= s, �(s; x) 6= �(t; x),

where

I �(s; x) is output of FSM
on input x, starting in state s.

Example

I 1 is a UIO for state s3.

I 1 is not a UIO for state s1.

UIO(x) := jft 2 S j �(s; x) 6= �(t; x)gj



Previous work

UIOs are fundamental in conformance testing of FSMs.

I Used to solve the state veri�cation problem.

Theoretical aspects

I NP-hard to check whether a state has a UIO
[Lee and Yannakakis, 1994].

I Shortest UIOs can be exponentially long
(empirical results suggest they are often short).

Experimental comparison between random search and GA
[Guo et al., 2004] and [Derderian et al., 2006]

I Min. length, max. number of di�erent outputs.

I Similar performance on small FSMs.

I GA better than random search on larger FSMs,
especially when long UIOs are needed



(1+1) Evolutionary Algorithm

(1+1) EA

Choose x uniformly from f0; 1gn:
Repeat

x0 := x.
Flip each bit of x0 with probability 1=n.
If f(x0) � f(x),

then x := x0.



Hard instance class - FSM Combination Lock

Theorem
On the instance class below

I The prob. that (1+1) EA (or RS) �nds the UIO for

state s1 within ec�n iterations is exponentially small.

s1 s2 s3 sn�1 sn0=a

0=a 0=a 0=b
1=a 1=a 1=a 1=a

1=a

n

Proof idea for (1+1) EA:

I All states \collapse" into s1 on input 0.
I Problem instance is a \needle in the haystack".
I Success probability bounded by drift analysis.

[Lehre and Yao, 2007]



Easy instance class - FSM Counter

Theorem
On the instance class below,

I (1+1) EA �nds the UIO for s1 in exp. time O(n log n).

I The prob. that random search �nds a UIO for s1
within ec�n iterations is exponentially small e�
(n).

s1 s2 s3 sn�1 sn

0=a 0=a 0=a 0=a

1=a 1=a 1=a 1=a

1=b

n

Proof idea: The problem instance is essentially OneMax.
[Lehre and Yao, 2007]



(1+1) EA? Are you kidding?

• What about populations?
• Well, large populations might not help.

– J. He and X. Yao, ‘From an Individual to a 
Population: An Analysis of the First Hitting Time 
of Population-Based Evolutionary Algorithms,”
IEEE Transactions on Evolutionary Computation, 
6(5):495-511, October 2002. 

– T. Chen, K. Tang, G. Chen and X. Yao, “A Large 
Population Size Can Be Unhelpful in 
Evolutionary Algorithms,” Theoretical Computer 
Science, accepted on 8/2/2011.



Operator Interaction

• We are often concerned about which operators to 
use. In fact, interactions among operators can be 
essential. E.g.,
– P. K. Lehre and X. Yao, “On the Impact of Mutation-

Selection Balance on the Runtime of Evolutionary 
Algorithms,” IEEE Transactions on Evolutionary 
Computation, accepted in January 2011.

• Even parameter settings.
– T. Chen, J. He, G. Chen and X. Yao, ``Choosing Selection 

Pressure for Wide-gap Problems,'' Theoretical Computer 
Science, 411(6):926-934, February 2010.



Insight into Problems
• Search algorithms can help us in gaining 

insight into a problem, e.g., we can use 
EDAs (Estimation of Distribution Algorithms)
to find a near optimum while learning a 
model of the underlying problem --- a 
wonderful idea!

• However, 
– . Chen, K. Tang, G. Chen and X. Yao, ``Analysis 

of Computational Time of Simple Estimation of 
Distribution Algorithms,'' IEEE Transactions on 
Evolutionary Computation, 14(1):1-22, 2010.



Future Work

Research Questions

I Relationships between problems and heuristics.

I Analysis of other meta-heuristics.

I Analysis of broader problem classes.

I Approximation quality of search heuristics.

Methodology

I Improve mathematical techniques.



More Practical Considerations
• Dynamic optimisation: The objective function may change; 

Fitness evaluation may be noisy; Variable values may be 
inaccurate

• P. Rohlfshagen and X. Yao, ``Dynamic Combinatorial Optimisation
Problems: An Analysis of the Subset Sum Problem,'' Soft Computing. 
Available online.

• Robust optimisation: The optimised solution is robust 
against minor perturbations of the decision variables

• H. Handa, L. Chapman and Xin Yao, ``Robust route optimisation for 
gritting/salting trucks: A CERCIA experience,'' IEEE Computational 
Intelligence Magazine, 1(1):6-9, February 2006.

• ROOT (robust optimisation over time)
• X. Yu, Y. Jin, K. Tang and X. Yao, ``Robust Optimization over Time --- A 

New Perspective on Dynamic Optimization Problems,'' Proc. of the 2010 
IEEE Congress on Evolutionary Computation (CEC2010), Barcelona, 
Spain, 18-23 July 2010, pp.3998-4003.



More Practical Considerations
• Scenario: Given a fixed time budget (say one day), 

what is the best solution you can generate using 
whatever algorithms at your disposal?

• Should I select one algorithm and allocate all the 
time to it? Should I divide the time budge among 
mutiple algorithms? How to allocate the time 
resources?
– F. Peng, K. Tang, G. Chen and X. Yao, ``Population-

based Algorithm Portfolios for Numerical Optimization,'' 
IEEE Transactions on Evolutionary Computation, 
14(5):782-800, October 2010.



More Practical Considerations
• Multi-objective formulation can sometimes 

solve a problem better, even by measuring a 
single objective only.
– K. Praditwong, M. Harman and X. Yao, 

``Software Module Clustering as a Multi-
Objective Search Problem,'' IEEE Transactions 
on Software Engineering, 37(2):264-282, 
March/April 2011.

– Z. Wang, K. Tang and X. Yao, ``Multi-objective 
Approaches to Optimal Testing Resource 
Allocation in Modular Software Systems,'' IEEE 
Transactions on Reliability, 59(3):563-575, 
September 2010.
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