Theoretical Foundations of SBSE

Xin Yao

CERCIA, School of Computer Science University of Birmingham

<u>Some</u> Theoretical Foundations of <u>SB</u>SE

Xin Yao and Many Others CERCIA, School of Computer Science University of Birmingham

EAs have many attractive features

ease of implementation

....

- applicable in a wide range of domains
- results often competitive with traditional techniques,

but the understanding of how EAs really work is incomplete

- can be highly sensitive to choice of parameter settings
- experimental parameter tuning expensive
- ▶ in most cases, run EA and see what happens

Traditional Investigation of EAs

Run algorithm(s) on "real world" problem instance(s). Analyse results with some statistical methodology.

How representative are the results?

- Can we make any guarantee about performance?
- What happens on other instances?
- What happens for larger instance sizes?
- What happens for other parameter settings?

How can the results be explained?

- Why does/does not the algorithm work?
- Can the algorithm be improved?

 \implies Why not attempt the well established methodology that exists for analysing classical algorithms?

Evolutionary Algorithms are Algorithms

Criteria for evaluating algorithms

- 1. Correctness.
 - Does the algorithm always give the correct output?
- 2. Computational Complexity.
 - How much computational resources does the algorithm require to solve the problem?

Same criteria also applicable to search heuristics

- 1. Correctness.
 - Discover global optimum in finite time?
- 2. Computational Complexity.
 - Time (number of function evaluations) most relevant computational resource.

SEBASE) Worst Case Computational Complexity

"Real world" runtime: Runtime on "real world" instances
Are these instances still relevant in 10 years? In 100 years?
Average case runtime: Runtime averaged over instances
What is an average input (e.g. average FSM)?

Worst case runtime: Runtime on hardest instance

- Strong guarantee about performance of an algorithm.
- Lower bounds obtained by analysing runtime on specific hard problem instance.

Prediction of resources needed for a given instance. Usually *runtime* as function of *instance size*. Number of fitness evaluations before finding optimum.

• Exponential runtime \implies Inefficient algorithm.

 Polynomial runtime => "Efficient" algorithm.
 Asymptotic notation hides "unimportant" details about runtime.

Search Heuristic are Randomised Algorithms

Search heuristics depend on random inputs

Runtime differs between runs.

Expected runtime

Runtime averaged over possible random inputs.

Success probability

• Probability of finishing within a specified time f(n).

Runtime analysis of search heuristics on software testing

- Understand behaviour of algorithm
- Runtime impact of operators and parameter settings
- Runtime impact of problem instance characteristics

Research strategy

- Start by analysing simple problems and algorithms
- Proceed with more complex scenarios
- Find appropriate mathematical techniques on the way

Conformance testing and UIOs

Conformance testing involves the *state verification problem*, which can be solved using unique input output (UIO) sequences.

Definition

A unique input output sequence for a state s is a sequence x st.

 $\blacktriangleright \quad \forall t \neq s, \ \lambda(s, x) \neq \lambda(t, x),$

where

λ(s, x) is output of FSM
 on input x, starting in state s.

Example

- 1 is a UIO for state s_3 .
- 1 is not a UIO for state s_1 .

Previous work

UIOs are fundamental in conformance testing of FSMs.

• Used to solve the *state verification problem*.

Theoretical aspects

- NP-hard to check whether a state has a UIO [Lee and Yannakakis, 1994].
- Shortest UIOs can be exponentially long (empirical results suggest they are often short).

Experimental comparison between random search and GA [Guo et al., 2004] and [Derderian et al., 2006]

- Min. length, max. number of different outputs.
- Similar performance on small FSMs.
- GA better than random search on larger FSMs, especially when long UIOs are needed

SEBASE) (1+1) Evolutionary Algorithm

(1+1) EA

Choose x uniformly from $\{0, 1\}^n$. **Repeat** x' := x. Flip each bit of x' with probability 1/n. If $f(x') \ge f(x)$, then x := x'.

Hard instance class - FSM Combination Lock

Theorem

On the instance class below

► The prob. that (1+1) EA (or RS) finds the UIO for state s₁ within e^{c·n} iterations is exponentially small.

Proof idea for (1+1) EA:

- All states "collapse" into s_1 on input 0.
- Problem instance is a "needle in the haystack".
- Success probability bounded by drift analysis.
 [Lehre and Yao, 2007]

Theorem

On the instance class below,

- (1+1) EA finds the UIO for s_1 in exp. time $O(n \log n)$.
- The prob. that random search finds a UIO for s_1 within $e^{c \cdot n}$ iterations is exponentially small $e^{-\Omega(n)}$.

<u>Proof idea:</u> The problem instance is essentially ONEMAX. [Lehre and Yao, 2007]

(1+1) EA? Are you kidding?

- What about populations?
- Well, large populations might not help.
 - J. He and X. Yao, 'From an Individual to a Population: An Analysis of the First Hitting Time of Population-Based Evolutionary Algorithms," *IEEE Transactions on Evolutionary Computation*, 6(5):495-511, October 2002.

 T. Chen, K. Tang, G. Chen and X. Yao, "A Large Population Size Can Be Unhelpful in Evolutionary Algorithms," Theoretical Computer Science, accepted on 8/2/2011.

Operator Interaction

- We are often concerned about which operators to use. In fact, interactions among operators can be essential. E.g.,
 - P. K. Lehre and X. Yao, "On the Impact of Mutation-Selection Balance on the Runtime of Evolutionary Algorithms," *IEEE Transactions on Evolutionary Computation*, accepted in January 2011.
- Even parameter settings.
 - T. Chen, J. He, G. Chen and X. Yao, "Choosing Selection Pressure for Wide-gap Problems," *Theoretical Computer Science*, 411(6):926-934, February 2010.

Insight into Problems

- Search algorithms can help us in gaining insight into a problem, e.g., we can use <u>EDAs (Estimation of Distribution Algorithms)</u> to find a near optimum while learning a model of the underlying problem --- a wonderful idea!
- However,
 - Chen, K. Tang, G. Chen and X. Yao, ``Analysis of Computational Time of Simple Estimation of Distribution Algorithms," *IEEE Transactions on Evolutionary Computation*, 14(1):1-22, 2010.

Research Questions

- Relationships between problems and heuristics.
- Analysis of other meta-heuristics.
- Analysis of broader problem classes.
- Approximation quality of search heuristics.

Methodology

Improve mathematical techniques.

More Practical Considerations

- Dynamic optimisation: The objective function may change; Fitness evaluation may be noisy; Variable values may be inaccurate
 - P. Rohlfshagen and X. Yao, ``Dynamic Combinatorial Optimisation Problems: An Analysis of the Subset Sum Problem," Soft Computing. Available online.
- Robust optimisation: The optimised solution is robust against minor perturbations of the decision variables
 - H. Handa, L. Chapman and Xin Yao, ``Robust route optimisation for gritting/salting trucks: A CERCIA experience," *IEEE Computational Intelligence Magazine*, 1(1):6-9, February 2006.
- ROOT (robust optimisation over time)
 - X. Yu, Y. Jin, K. Tang and X. Yao, ``Robust Optimization over Time --- A New Perspective on Dynamic Optimization Problems," *Proc. of the 2010 IEEE Congress on Evolutionary Computation (CEC2010)*, Barcelona, Spain, 18-23 July 2010, pp.3998-4003.

More Practical Considerations

- Scenario: Given a fixed time budget (say one day), what is the best solution you can generate using whatever algorithms at your disposal?
- Should I select one algorithm and allocate all the time to it? Should I divide the time budge among mutiple algorithms? How to allocate the time resources?
 - F. Peng, K. Tang, G. Chen and X. Yao, "Populationbased Algorithm Portfolios for Numerical Optimization," *IEEE Transactions on Evolutionary Computation*, 14(5):782-800, October 2010.

More Practical Considerations

- Multi-objective formulation can sometimes solve a problem better, even by measuring a single objective only.
 - K. Praditwong, M. Harman and X. Yao,
 Software Module Clustering as a Multi-Objective Search Problem," *IEEE Transactions on Software Engineering*, 37(2):264-282, March/April 2011.
 - Z. Wang, K. Tang and X. Yao, "Multi-objective Approaches to Optimal Testing Resource Allocation in Modular Software Systems," *IEEE Transactions on Reliability*, 59(3):563-575, September 2010.