
Theoretical Foundations of 
SBSE

Xin Yao
CERCIA, School of Computer Science

University of Birmingham



Some Theoretical 
Foundations of SBSE

Xin Yao and Many Others
CERCIA, School of Computer Science

University of Birmingham



Motivation for theoretical analysis of EAs

EAs have many attractive features

I ease of implementation

I applicable in a wide range of domains

I results often competitive with traditional techniques,

but the understanding of how EAs really work is incomplete

I can be highly sensitive to choice of parameter settings

I experimental parameter tuning expensive

I in most cases, run EA and see what happens

I ...



Traditional Investigation of EAs

Run algorithm(s) on \real world" problem instance(s).
Analyse results with some statistical methodology.

How representative are the results?

I Can we make any guarantee about performance?

I What happens on other instances?

I What happens for larger instance sizes?

I What happens for other parameter settings?

How can the results be explained?

I Why does/does not the algorithm work?

I Can the algorithm be improved?

=) Why not attempt the well established methodology
that exists for analysing classical algorithms?



Evolutionary Algorithms are Algorithms

Criteria for evaluating algorithms

1. Correctness.
I Does the algorithm always give the correct output?

2. Computational Complexity.
I How much computational resources does

the algorithm require to solve the problem?

Same criteria also applicable to search heuristics

1. Correctness.
I Discover global optimum in �nite time?

2. Computational Complexity.
I Time (number of function evaluations)

most relevant computational resource.



Worst Case Computational Complexity

\real world" instance hard instance

runtime

instances

\Real world" runtime: Runtime on \real world" instances

I Are these instances still relevant in 10 years? In 100 years?

Average case runtime: Runtime averaged over instances

I What is an average input (e.g. average FSM)?

Worst case runtime: Runtime on hardest instance

I Strong guarantee about performance of an algorithm.

I Lower bounds obtained by analysing runtime
on speci�c hard problem instance.



Computational Complexity of Search Heuristics

0 50 100

0
10

00
0

Instance Size

R
un

tim
e

Prediction of resources needed for a given instance.
Usually runtime as function of instance size.
Number of �tness evaluations before �nding optimum.
I Exponential runtime =) Ine�cient algorithm.
I Polynomial runtime =) \E�cient" algorithm.

Asymptotic notation hides \unimportant" details about
runtime.



Search Heuristic are Randomised Algorithms

E[Tn] f(n)

E[Tn]

f(n)

n
Instance Size

Search heuristics depend on random inputs

I Runtime di�ers between runs.

Expected runtime

I Runtime averaged over possible random inputs.

Success probability

I Probability of �nishing within a speci�ed time f(n).



Research Objectives and Strategy

Runtime analysis of search heuristics on software testing

I Understand behaviour of algorithm

I Runtime impact of operators and parameter settings

I Runtime impact of problem instance characteristics

Research strategy

I Start by analysing simple problems and algorithms

I Proceed with more complex scenarios

I Find appropriate mathematical techniques on the way



Conformance testing and UIOs

Conformance testing involves the state veri�cation problem,
which can be solved using unique input output (UIO)
sequences.

s3

s4

s2 s1

1=a

0=b 0=b

1=b

0=b

0=a

1=b1=b

De�nition
A unique input output sequence

for a state s is a sequence x st.

I 8t 6= s, �(s; x) 6= �(t; x),

where

I �(s; x) is output of FSM
on input x, starting in state s.

Example

I 1 is a UIO for state s3.

I 1 is not a UIO for state s1.

UIO(x) := jft 2 S j �(s; x) 6= �(t; x)gj



Previous work

UIOs are fundamental in conformance testing of FSMs.

I Used to solve the state veri�cation problem.

Theoretical aspects

I NP-hard to check whether a state has a UIO
[Lee and Yannakakis, 1994].

I Shortest UIOs can be exponentially long
(empirical results suggest they are often short).

Experimental comparison between random search and GA
[Guo et al., 2004] and [Derderian et al., 2006]

I Min. length, max. number of di�erent outputs.

I Similar performance on small FSMs.

I GA better than random search on larger FSMs,
especially when long UIOs are needed



(1+1) Evolutionary Algorithm

(1+1) EA

Choose x uniformly from f0; 1gn:
Repeat

x0 := x.
Flip each bit of x0 with probability 1=n.
If f(x0) � f(x),

then x := x0.



Hard instance class - FSM Combination Lock

Theorem
On the instance class below

I The prob. that (1+1) EA (or RS) �nds the UIO for

state s1 within ec�n iterations is exponentially small.

s1 s2 s3 sn�1 sn0=a

0=a 0=a 0=b
1=a 1=a 1=a 1=a

1=a

n

Proof idea for (1+1) EA:

I All states \collapse" into s1 on input 0.
I Problem instance is a \needle in the haystack".
I Success probability bounded by drift analysis.

[Lehre and Yao, 2007]



Easy instance class - FSM Counter

Theorem
On the instance class below,

I (1+1) EA �nds the UIO for s1 in exp. time O(n log n).

I The prob. that random search �nds a UIO for s1
within ec�n iterations is exponentially small e�
(n).

s1 s2 s3 sn�1 sn

0=a 0=a 0=a 0=a

1=a 1=a 1=a 1=a

1=b

n

Proof idea: The problem instance is essentially OneMax.
[Lehre and Yao, 2007]



(1+1) EA? Are you kidding?

• What about populations?
• Well, large populations might not help.

– J. He and X. Yao, ‘From an Individual to a 
Population: An Analysis of the First Hitting Time 
of Population-Based Evolutionary Algorithms,”
IEEE Transactions on Evolutionary Computation, 
6(5):495-511, October 2002. 

– T. Chen, K. Tang, G. Chen and X. Yao, “A Large 
Population Size Can Be Unhelpful in 
Evolutionary Algorithms,” Theoretical Computer 
Science, accepted on 8/2/2011.



Operator Interaction

• We are often concerned about which operators to 
use. In fact, interactions among operators can be 
essential. E.g.,
– P. K. Lehre and X. Yao, “On the Impact of Mutation-

Selection Balance on the Runtime of Evolutionary 
Algorithms,” IEEE Transactions on Evolutionary 
Computation, accepted in January 2011.

• Even parameter settings.
– T. Chen, J. He, G. Chen and X. Yao, ``Choosing Selection 

Pressure for Wide-gap Problems,'' Theoretical Computer 
Science, 411(6):926-934, February 2010.



Insight into Problems
• Search algorithms can help us in gaining 

insight into a problem, e.g., we can use 
EDAs (Estimation of Distribution Algorithms)
to find a near optimum while learning a 
model of the underlying problem --- a 
wonderful idea!

• However, 
– . Chen, K. Tang, G. Chen and X. Yao, ``Analysis 

of Computational Time of Simple Estimation of 
Distribution Algorithms,'' IEEE Transactions on 
Evolutionary Computation, 14(1):1-22, 2010.



Future Work

Research Questions

I Relationships between problems and heuristics.

I Analysis of other meta-heuristics.

I Analysis of broader problem classes.

I Approximation quality of search heuristics.

Methodology

I Improve mathematical techniques.



More Practical Considerations
• Dynamic optimisation: The objective function may change; 

Fitness evaluation may be noisy; Variable values may be 
inaccurate

• P. Rohlfshagen and X. Yao, ``Dynamic Combinatorial Optimisation
Problems: An Analysis of the Subset Sum Problem,'' Soft Computing. 
Available online.

• Robust optimisation: The optimised solution is robust 
against minor perturbations of the decision variables

• H. Handa, L. Chapman and Xin Yao, ``Robust route optimisation for 
gritting/salting trucks: A CERCIA experience,'' IEEE Computational 
Intelligence Magazine, 1(1):6-9, February 2006.

• ROOT (robust optimisation over time)
• X. Yu, Y. Jin, K. Tang and X. Yao, ``Robust Optimization over Time --- A 

New Perspective on Dynamic Optimization Problems,'' Proc. of the 2010 
IEEE Congress on Evolutionary Computation (CEC2010), Barcelona, 
Spain, 18-23 July 2010, pp.3998-4003.



More Practical Considerations
• Scenario: Given a fixed time budget (say one day), 

what is the best solution you can generate using 
whatever algorithms at your disposal?

• Should I select one algorithm and allocate all the 
time to it? Should I divide the time budge among 
mutiple algorithms? How to allocate the time 
resources?
– F. Peng, K. Tang, G. Chen and X. Yao, ``Population-

based Algorithm Portfolios for Numerical Optimization,'' 
IEEE Transactions on Evolutionary Computation, 
14(5):782-800, October 2010.



More Practical Considerations
• Multi-objective formulation can sometimes 

solve a problem better, even by measuring a 
single objective only.
– K. Praditwong, M. Harman and X. Yao, 

``Software Module Clustering as a Multi-
Objective Search Problem,'' IEEE Transactions 
on Software Engineering, 37(2):264-282, 
March/April 2011.

– Z. Wang, K. Tang and X. Yao, ``Multi-objective 
Approaches to Optimal Testing Resource 
Allocation in Modular Software Systems,'' IEEE 
Transactions on Reliability, 59(3):563-575, 
September 2010.


	Theoretical Foundations of SBSE
	Some Theoretical Foundations of SBSE
	Background
	But Why?
	Observation 
	OK, OK, …
	Theoretical Insight
	An Example
	Insight / Understanding
	Problem Hardness
	Algorithmic Features and Problem Characteristics
	Bridging the Gap
	Demystification
	What’s Next
	yao-kings-nov09.pdf
	Introduction
	Runtime Analysis of Evolutionary Algorithms

	Conformance Testing of FSMs
	FSMs and Unique Input Output Sequences
	Hard and easy instance classes for (1+1) EA
	Crossover can be constructive on the UIO problem

	Branch Coverage Testing
	Triangle Classification

	Conclusion

	COW13Yao.pdf
	Theoretical Foundations of SBSE
	Some Theoretical Foundations of SBSE
	(1+1) EA? Are you kidding?
	Operator Interaction

	COW13Yao.pdf
	Theoretical Foundations of SBSE
	Some Theoretical Foundations of SBSE
	(1+1) EA? Are you kidding?
	Operator Interaction
	Insight into Problems

	COW13Yao.pdf
	Theoretical Foundations of SBSE
	Some Theoretical Foundations of SBSE
	(1+1) EA? Are you kidding?
	Operator Interaction
	Insight into Problems
	More Practical Considerations
	More Practical Considerations
	More Practical Considerations




