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The Next Release Problem

1 Companies constantly release new products or versions
2 Requirements for a release can be of different kinds

Mandatory requirements vs. optional requirements
Commercial success of releases depends on both kinds
Decision-makers only control optional requirements

3 Requirements are subject to constrains
Policy
Time-to-market
Dependencies
Budget

4 Requirements have expected estimations
Costs
Revenues

5 Which optional requirements to implement?
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Sensitivity analysis

1 Estimation is not an exact science
2 Requirements are affected by estimation errors

Costs are invariably underestimated
Revenues are usually more predictable

3 Budgets are subjected to cuts (now more true than ever)
4 Complex products go through different budgeting scenarios
5 Sensitivity analysis helps to identify the hot-spots

Efficiency issues
One-at-a-time approach
Exact versus approximate
How can we be sure that the observed variation stems from
inherent sensitivity and not from the nature of the optimisation
algorithm?
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Industrial example: Motorola

Motorola identified 40 requirements for a new product
A small number of requirements were identified as mandatory

Any release of the product must include at least these
A fix amount of budget is devoted to this task

Requirements can become mandatory by different reasons
Core product functionality
Dependence to other requirements

Decision-makers faced 35 independent requirements
Costs were estimated
Revenues were based in customer assessments

There are 235 possible choices
> 34000 million possibilities
> 1000 million possibilities with half the total cost as budget
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Sensitivity analysis of the Motorola data

1 21 perturbations (from -50% to +50% with 5% steps)
2 Positive perturbations show the effect of underestimations
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Knapsack formulation

The Next Release Problem (NRP)
Three variants defined by Bagnall et al.

Simplest NRP is just a classical knapsack problem in disguise
Maximising revenues under budget constrains

Budget is known a priori
Optimal solutions exist and may not be unique

The Knapsack Problem (KP)
First studied in the 1950s
Basic variants are well understood

Most variants are NP-hard problems
Exact and approximation algorithms have been devised
We are lucky: KP is weakly NP-hard
KP admits pseudopolynomial time exact algorithms
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Approximation algorithms

Guarantees
1 Different guarantees for errors depending on the algorithm

No guarantee: unbounded error algorithms
Relative error: (1−ε)-approximation algorithms
Absolute error: absolute performance approx. algorithms

2 Two advanced schemes
Polynomial-time approximation schemes (PTAS)
Fully polynomial-time approximation schemes (FPTAS)

Facts
1 Guaranteeing absolute error for KP is as hard as exactness
2 Lucky again that KP is weakly NP-hard
3 FPTAS cannot exist for strongly NP-hard problems (if P 6=NP)
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Greedy algorithms

Strategies
ICO Increasing Cost Order

DRO Decreasing Revenue Order

DRD Decreasing Revenue Density

DRO and DRD can suffer from unbounded error

DRD with postprocessing is an 1
2 -approximation algorithm

Advantages
1 Very fast and easy to implement
2 Do not impose artificial restrictions to their inputs
3 A natural basis for better algorithms, for example local search
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Exact algorithms

Facts
1 Many algorithms have been devised in the last 50 years
2 Advanced algorithms are difficult to implement and test
3 For many algorithms space can be as critical as time

Approach
1 Focus in “simple” algorithms and data structures
2 Algorithms have to be efficient just for the application domain

No matter how good our exact algorithms are, they will always
behave bad for an infinite number of instances, as long as P 6=NP
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Dynamic programming algorithms

Bellman’s equation for KP

z(n,B)=


0 if n = 1∧c1 >B

r1 if n = 1∧c1 ≤B

z(n−1,B) if n > 1∧cn >B

max{z(n−1,B),z(n−1,B−cn)+ rn} if n > 1∧cn ≤B

Nemhauser-Ullmann’s algorithm (NU)
1 As values of z are computed, they are saved for later reuse
2 Solution is recovered from the values of z previously saved
3 In 2003, Beier and Vöcking proved very interesting properties

NU solves a random KP in expected polynomial time
This is so under quite general conditions
Strongly correlated instances are provably harder for NU

F. Palomo (UCASE – UCA) Exact Sensitivity Analysis for Requirements May 2011 10 / 16



Correlation

1 Highly-correlated instances are reported hard in the literature
2 We control Pearson’s correlation during instance generation
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Scalability experiments

1 50 different datasets with 315 NRP random instances each
15 problem sizes from 100 to 1500, with steps of 100
21 correlation degrees from 0% to 100%, every 5%

2 Significant # of experiments: 15 750 instances solved
3 Experiments performed in just one core of a 1000 £ machine

Intel Core i7 2.67 GHz CPU with 12 GiB RAM
C++ on GNU/Linux

4 Results show that the model

t(n,ρ)= an2 expρ+bn2 +cn logn

fits quite well to our observed times
NU behaves polynomially in the number of requirements
Except when costs and revenues are very highly correlated
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Conclusions

1 Exact algorithms enable precise sensitivity analysis (PSA)
Necessary to isolate estimation from approximation errors
Approximation errors may trick the decision-maker

2 Scalability is achievable, at least for reasonable cases
3 However, PSA is still expensive

21 perturbations (from -50% to +50% with 5% steps)
21 ·n instances for a single budget

Still, we can complete a PSA of a 500 requirements project for one
budget proposal in less than one day
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Ongoing work

Multi-objective NRP
Maximising revenues while minimising costs
A Holy Grail

Costs and revenues are conflicting objectives
Budget may be known a priori or a posteriori

Pareto-optimal solutions instead of absolute, optimal solutions
Different approaches

Use multi-objective KP as a model to find the Pareto frontier
Produce the Pareto frontier as a byproduct of a KP algorithm

Parallelisation
Different budgets can be analysed at the same time

As well as different cost perturbations when a budget is fixed
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Open questions

1 How can we compare SBSE methods objectively?
2 How can we make testing these algorithms easier?
3 Are there any other areas where exact methods are key?
4 Is SBSE just about heuristics or also about exact methods?
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