
Session Types, Typestate and Security!

Simon Gay!
School of Computing Science!

University of Glasgow!

CREST Workshop / Security and Code, 6th April 2011 2!

Session Types!

Type-theoretic specification of communication protocols,!
so that protocol implementations can be verified by static!
type-checking.!

Maths server (server side)!

T = &{ plus: ?int.?int.!int.T,!
 neg: ?int.!int.T,!
 quit: end }!

Maths server (client side)!

S = +{ plus: !int.!int.?int.S,!
 neg: !int.?int.S,!
 quit: end }!

S = dual(T)!

CREST Workshop / Security and Code, 6th April 2011 3!

Session Types!

Makes sense in any concurrent/distributed setting with!
point-to-point communication channels, as long as each!
endpoint of a channel has a unique owner !
(i.e. two-party protocols).!

Multi-party protocols:!
1.  Channels are mobile, so protocols can be delegated.!
2.  Recent work on multi-party session types 

(Carbone, Honda & Yoshida 2008, and more since then).!

Concentrate on two-party protocols.!

CREST Workshop / Security and Code, 6th April 2011 4!

Session Types!
Developed by Honda (1993); Takeuchi, Honda & Kubo (1994);!
Honda, Vasconcelos & Kubo (1998) for process calculus.!

Session types for functional languages:!
Gay, Ravara & Vasconcelos (2003,2004,2006)!
Neubauer & Thiemann (2004) !

Session types for operating system services:!
Fähndrich et al. (2006)!

Session types for object-oriented languages:!
Dezani-Ciancaglini et al. (2005, 2006, 2007)!
Gay et al. (2009, 2010, 2011)!

+ component-based systems, security, web services, ... !

Subtyping for session types:!
Gay & Hole (1999, 2005); Gay (2008)!

Outline!

CREST Workshop / Security and Code, 6th April 2011 5!

Bonelli, Compagnoni and Gunter (2003): session types +!
correspondence assertions for authenticity properties.!

Corin et al. (2007): synthesis of security protocols from!
session types.!

Generalisation from session types to typestate, and then:!

Typestate in security APIs.!

Example (Bonelli et al)!

CREST Workshop / Security and Code, 6th April 2011 6!

Client! ATM! Bank!

?Acct . &{ deposit: ?int . ! int . 0,!
 withdraw: ?int . !int . 0 }!

Example (Bonelli et al)!

CREST Workshop / Security and Code, 6th April 2011 7!

Client! ATM! Bank!

&{ deposit: ?Acct . ?int . ! int . 0,!
 withdraw: ?Acct . ?int . !int . 0 }!

Example (Bonelli et al)!

CREST Workshop / Security and Code, 6th April 2011 8!

Client! ATM! Bank!

Client(acctC,amtC,a) =!
 let k = request a!
 send acctC on k!
 select deposit on k!
 send amtC on k!
 let balC = receive k!
 stop!

access point for ATM!

channel for this session!

Example (Bonelli et al)!

CREST Workshop / Security and Code, 6th April 2011 9!

Client! ATM! Bank!

ATM(a,b) =!
 let k = accept a!
 let acctA = receive k!
 offer k { deposit: let h = request b!
 let amtA = receive k!
 select deposit on h!
 send acctA on h!
 send amtA on h!
 let balA = receive h!
 send balA on k!
 ATM(a,b)!
 withdraw: … }!

Example (Bonelli et al)!

CREST Workshop / Security and Code, 6th April 2011 10!

Client! ATM! Bank!

Bank(b) =!
 let h = accept b!
 offer h { deposit: let acctB = receive h!
 let amtB = receive h!
 let balB = update(acctB,amtB)!
 send balB on h!
 Bank(b)!
 withdraw: … }!

Example (Bonelli et al)!

CREST Workshop / Security and Code, 6th April 2011 11!

Client! ATM! Bank!

Standard session typing guarantees that all messages are!
sent and received as expected. This can be verified by!
static type checking. !

Example (Bonelli et al)!

CREST Workshop / Security and Code, 6th April 2011 12!

Client! ATM! Bank!

ATM(a,b) =!
 let k = accept a!
 let acctA = receive k!
 offer k { deposit: let h = request b!
 let amtA = receive k!
 select deposit on h!
 send acctA on h!
 send amtA on h!
 let balA = receive h!
 send balA on k!
 ATM(a,b)!
 withdraw: … }!

Example (Bonelli et al)!

CREST Workshop / Security and Code, 6th April 2011 13!

Client! ATM! Bank!

ATM(a,b) =!
 let k = accept a!
 let acctA = receive k!
 offer k { deposit: let h = request b!
 let amtA = receive k!
 select deposit on h!
 send acctA on h!
 send amtA-10 on h!
 let hʼ = request b!
 select deposit on hʼ!
 send diffAcct on hʼ!
 send 10 on hʼ …!

This version is also!
typable.!

Example (Bonelli et al)!

CREST Workshop / Security and Code, 6th April 2011 14!

We can type an ATM that follows the protocols correctly but!
does not do correct banking.!

This doesnʼt mean that the type system is wrong – it just means!
that the type system doesnʼt address questions of correct!
banking, only questions of correct communication.!

Bonelli et al. extend the type system with correspondence!
assertions, following Gordon & Jeffrey (2002). The idea of!
correspondence assertions themselves comes from!
Woo & Lam (1993). !

Correspondence Assertions!

CREST Workshop / Security and Code, 6th April 2011 15!

The idea is to introduce assertions begin L and end L!
(where L ranges over some set of labels) and then prove that!
in every run of a system, every end L is preceded by a !
corresponding begin L .!

For example, begin <acct,amt> interpreted as “client acct asked !
to deposit amt” and end <acct,amt> interpreted as “ATM asked to!
deposit amt for client acct”.!

Saying that every end has a matching begin is a safety property.!

Could prove it by model-checking, but Bonelli et al. (following!
Gordon & Jeffrey) do it by typing.!

Client with Assertion!

CREST Workshop / Security and Code, 6th April 2011 16!

Client! ATM! Bank!

Client(acctC,amtC,a) =!
 let k = request a!
 begin <acctC,amtC>!
 send acctC on k!
 select deposit on k!
 send amtC on k!
 let balC = receive k!
 stop!

Bank with Assertion!

CREST Workshop / Security and Code, 6th April 2011 17!

Client! ATM! Bank!

Bank(b) =!
 let h = accept b!
 offer h { deposit: let acctB = receive h!
 let amtB = receive h!
 end <acctB,amtB>!
 let balB = update(acctB,amtB)!
 send balB on h!
 Bank(b)!
 withdraw: … }!

Verifying Correspondence Assertions!

CREST Workshop / Security and Code, 6th April 2011 18!

The idea of the type system is that every program fragment!
has a typing of the form!

P : [L1,…Ln]!

The interpretation is that the multiset [L1,…,Ln] is an upper!
bound on the labels that P might end but not begin.!
A soundness theorem states that this interpretation is obeyed!
by the semantics.!

The aim is to give the top-level program the type [] .!

Verifying Correspondence Assertions!

CREST Workshop / Security and Code, 6th April 2011 19!

For sequential programs the typing rules are very simple, e.g.!

… end L : [L]!

begin L … end L : []!

but this is not very interesting. The key is dealing with parallel!
composition.!

Sending a message can also transfer a begin obligation to!
the receiver. So the bank can match its end <acct,amt> with!
the begin <acct,amt> received from the ATM, which in turn is!
received from the Client.!

A Note on Type Checking Algorithms!

CREST Workshop / Security and Code, 6th April 2011 20!

Bonelli et al.ʼs type system can be implemented, although the!
communications (in the session type) that transfer begin!
obligations must be explicitly annotated. These annotations!
can be seen as useful documentation of the protocol.!

In order to type check the banking example, where we want to!
know that the amount of the deposit is correct, the type!
checker must be able to prove (in)equalities in first order!
linear arithmetic, e.g. amtA-10 ≠ amtA.!

Comparing Bonelli et al. with Gordon & Jeffrey!

CREST Workshop / Security and Code, 6th April 2011 21!

Bonelli et al.ʼs type system is simpler because the session!
types already give a lot of information about the relative order!
of events. !

?Acct . &{ deposit: ?int . ! int . 0,!
 withdraw: ?int . !int . 0 }!

everything in Client before this message is before !
everything in ATM after this message!

Gordon & Jeffrey donʼt have session types, so instead they!
use a “nonce handshake protocol” to synchronize between!
components, and attach begin obligations to the nonce.!

Comparing Bonelli et al. with Gordon & Jeffrey!

CREST Workshop / Security and Code, 6th April 2011 22!

Gordon & Jeffrey have a much stronger safety property: the !
correspondence assertions match in the presence of any !
attacker (and the attacker is untyped).!

There is some work to do in following up this difference,!
which might also be related to the next point…!

Also, correspondence assertions in multi-party session types!
have not been investigated.!

CREST Workshop / Security and Code, 6th April 2011 23!

Secure Implementations for Typed Session
Abstractions!

Corin, Deniélou, Fournet, Bhargavan, Leifer!
CSF 2007 + later work!

Work on session types for programming languages assumes!
that the whole system will be type checked.!

Corin et al. take a different view, and regard (multi-party)!
session types as specifications for security protocols: !
the specified sequence of messages must be sent securely, !
with authentication of the sender.!

E.g. security protocols typically contain mechanisms for !
keeping track of which session the parties are in – the idea is !
to use session types to specify this.!

CREST Workshop / Security and Code, 6th April 2011 24!

Secure Implementations for Typed Session
Abstractions!

Corin et al. have produced a complete compiler system based !
on an extension of F#.!

Our main result is that, when reasoning about programs !
that use our session implementation, one can safely !
assume that all session peers comply with their roles—!
without trusting their remote implementations.!

If you are interested in specifying and/or implementing !
security protocols then session types are relevant. They might!
also be a good starting point for further analysis.!

CREST Workshop / Security and Code, 6th April 2011 25!

Typestate and Security!

Typestate is the idea that the type of an object should specify!
not only which operations are possible, but also when they are!
possible. !

Roughly speaking: some sequences of method calls are not!
allowed.!

The aim is to develop type systems that verify typestate!
properties statically.!

References: Yemini & Strom 1986; !
Vault & Fugue (DeLine & Fahndrich 2001-);!
Plural / Plaid (Aldrich et al. 2007-); !
Gay et al. 2009, 2010, 2011; Hanoi (McGinniss 2010) !

CREST Workshop / Security and Code, 6th April 2011 26!

Typestate and Session Types!

The connection between session types and typestate is that a!
channel with a session type can be viewed as an object with!
non-uniform method availability: send and receive are only!
available when the session type says that they should be!
available.!

CREST Workshop / Security and Code, 6th April 2011 27!

Example: java.security.Signature !

An interface for objects that work with digital signatures:!
either signing data or verifying a signature. !

initSign!

update!

sign!

update!

initVerify! verify!

CREST Workshop / Security and Code, 6th April 2011 28!

Example: java.security.Signature !

It should be possible to specify this transition diagram in a!
typestate system such as Plural or Hanoi.!

(Aldrich et al. have done a lot of work with naturally-occurring!
APIs; I donʼt know whether or not they have looked at!
java.security). !

If you are interested in security APIs, you might find typestate!
systems interesting, or you might be able to give me other!
naturally-occurring examples.!

CREST Workshop / Security and Code, 6th April 2011 29!

Conclusion!

Several connections between session types (and the related!
topic of typestate) and security have emerged from recent!
work.!

There should be possibilities for further work in several!
different directions.!

