What role for static analysis in malware detection?

Laurence Tratt
http://tratt.net/laurie/

Middlesex University
With thanks to David Clark

2011/4/6

L. Tratt http://tratt.net/laurie Static analysis and malware 2011/4/6

http://tratt.net/laurie/
http://tratt.net/laurie/

Overview

@ What is malware and how do we traditionally detect it?

© What is static analysis?

© How does static analysis promise to help detect malware?
© How far can we go with it?

L. Tratt http://tratt.net/laurie/ Static analysis and malware 2011/4/6 2/21

http://tratt.net/laurie/

What is malware?

@ Malign software: infilirates and subverts.
@ Uses from spam e-mail botnets to IP theft.

L. Tratt http://tratt.net/laurie Static analysis and malware 2011/4/6 3/21

http://tratt.net/laurie/

What is malware?

@ Malign software: infilirates and subverts.
@ Uses from spam e-mail botnets to IP theft.
@ Executive summary: malware is bad.

L. Tratt http://tratt.net/laurie/ Static analysis and malware 2011/4/6 3/21

http://tratt.net/laurie/

How do we detect malware?

@ Traditionally: signature (‘fingerprint’) detection.
@ If a binary matches a malware signature, it's a bad ’un.
@ [Note: the signature may be for part(s) of a malware.]

L. Tratt http://tratt.net/laurie/ Static analysis and malware 2011/4/6 4/21

http://tratt.net/laurie/

How to defeat traditional signature matching.

@ Original malware:

MOV RO, #3 x = 3
BL DO_SOMETHING_WITH_RO f (x)
Give it hash H.

L. Tratt http://tratt.net/laurie Static analysis and malware 2011/4/6 5/21

http://tratt.net/laurie/

How to defeat traditional signature matching.

@ Original malware:

MOV RO, #3 x = 3
BL DO_SOMETHING_WITH_RO f (x)
Give it hash H.

@ Malware author (remember: bad, not mad) obfuscates it to:

~

MOV RO, #3 x 1= 3
MOV R1, #4 y =4
BL DO_SOMETHING_WITH_RO f(x)

Will have hash H' where H # H'.

L. Tratt http://tratt.net/laurie/ Static analysis and malware 2011/4/6

http://tratt.net/laurie/

How to defeat traditional signature matching (2).

@ Idea: can signatures be like regular expressions, ‘skipping’ over
irrelevant stuff?

L. Tratt http://tratt.net/laurie Static analysis and malware 2011/4/6 6/21

http://tratt.net/laurie/

How to defeat traditional signature matching (2).

@ Idea: can signatures be like regular expressions, ‘skipping’ over
irrelevant stuff?

@ Original malware:

MOV RO, #3 X := 3
BL DO_SOMETHING_WITH_RO £(x)

L. Tratt http://tratt.net/laurie/ Static analysis and malware 2011/4/6 6/21

http://tratt.net/laurie/

How to defeat traditional signature matching (2).

@ Idea: can signatures be like regular expressions, ‘skipping’ over
irrelevant stuff?

@ Original malware:

MOV RO, #3 X := 3

BL DO_SOMETHING_WITH_RO f(x)
@ Malware author obfuscates it to:

MOV RO, #1 X :=1

ADD RO, RO, #2 X += 2

BL DO_SOMETHING_WITH_RO f(x)

L. Tratt http:/ at Static analysis and malware 2011/4/6

http://tratt.net/laurie/

How to defeat traditional signature matching (2).

@ Idea: can signatures be like regular expressions, ‘skipping’ over
irrelevant stuff?

@ Original malware:

MOV RO, #3 X := 3

BL DO_SOMETHING_WITH_RO f(x)
@ Malware author obfuscates it to:

MOV RO, #1 X :=1

ADD RO, RO, #2 X += 2

BL DO_SOMETHING_WITH_RO f(x)

@ No regular expression matching will match that!

2011/4/6

L. Tratt http://tratt.net/laurie/ Static analysis and malware

http://tratt.net/laurie/

How to defeat traditional signature matching (2).

@ Idea: can signatures be like regular expressions, ‘skipping’ over
irrelevant stuff?

@ Original malware:

MOV RO, #3 X := 3

BL DO_SOMETHING_WITH_RO f(x)
@ Malware author obfuscates it to:

MOV RO, #1 X :=1

ADD RO, RO, #2 X += 2

BL DO_SOMETHING_WITH_RO f(x)

@ No regular expression matching will match that!
@ Metamorphic / polymorphic malware on the rise.
@ Traditional signature detection ever less effective.

L. Tratt http://tratt.net/laurie/ Static analysis and malware 2011/4/6

http://tratt.net/laurie/

A proposed approach.

@ Traditional signature detection looks at program syntax.

L. Tratt http://tratt.net/laurie Static analysis and malware 2011/4/6 7/21

http://tratt.net/laurie/

A proposed approach.

@ Traditional signature detection looks at program syntax.
@ What about the programs semantics?

@ Intuition: a malware’s core semantics must be the same before
and after obfuscation.

@ So:

L. Tratt http://tratt.net/laurie/ Static analysis and malware 2011/4/6 7/21

http://tratt.net/laurie/

A proposed approach.

@ Traditional signature detection looks at program syntax.
@ What about the programs semantics?

@ Intuition: a malware’s core semantics must be the same before
and after obfuscation.

@ So: we need to statically analyse its semantics!

L. Tratt http://tratt.net/laurie/ Static analysis and malware 2011/4/6 7/21

http://tratt.net/laurie/

Static analysis.

@ Looking at a static program (source code or binary) and
uncovering information about it.

@ Take LLVM’s static analyser (scan-build). Spot the bug?

char xexpand_path (const char =*path)
{
char xexp_path;
// I1f path begins with "~/", we expand that to the users home directory.

if (strncmp (path, HOME_PFX, strlen(HOME_PFX)) == 0) {
struct passwd xpw_ent = getpwuid(geteuid());
if (pw_ent == NULL) {

free (exp_path);
return NULL;
}

if (asprintf (&exp_path, "%$s%s%s", pw_ent->pw_dir, DIR_SEP, path +
strlen (HOME_PFX)) == -1)
errx(l, "expand_path: asprintf: unable to allocate memory");
}
else {
if (asprintf (&exp_path, "%s", path) == -1)
errx(l, "expand_path: asprintf: unable to allocate memory");

}

return exp_path;

L. Tratt ht auri Static analysis and malware 2011/4/6 8/21

http://tratt.net/laurie/

Static analysis.

@ Looking at a static program (source code or binary) and
uncovering information about it.

@ Take LLVM’s static analyser (scan-build). Spot the bug?

char xexpand_path (const char =*path)
{
char xexp_path;
// I1f path begins with "~/", we expand that to the users home directory.

if (strncmp (path, HOME_PFX, strlen(HOME_PFX)) == 0) {
struct passwd xpw_ent = getpwuid(geteuid());
if (pw_ent == NULL) {

free (exp_path);
return NULL;
}

if (asprintf (&exp_path, "%$s%s%s", pw_ent->pw_dir, DIR_SEP, path +
strlen (HOME_PFX)) == -1)
errx(l, "expand_path: asprintf: unable to allocate memory");
}
else {
if (asprintf (&exp_path, "%s", path) == -1)
errx(l, "expand_path: asprintf: unable to allocate memory");

}

return exp_path;

L. Tratt ht auri Static analysis and malware 2011/4/6 8/21

http://tratt.net/laurie/

Static analysis (2).

T e e e L DT PRy - e
’ =

784
785 cur_ext-sworking = false;
786 if (conf->mode == DAEMON_MODE) {
787 // If we're in daemon mode then, if this external has been found
788 // not to be working, check the timeout (if it exists). If the
789 // timeout hasn't been exceeded, then we have to give up on
790 // trying to send this messages via this, or other, externals -
791 // we need to wait for the timeout to be exceeded.
792 if (cur_ext->timeout != 0 &&
793 cur_ext->last_success + cur_ext->timeout > time(NULL)) {
794 goto fail;
795 }
796 }
797
798 CUF_ext = cur_ext-snext;
799 }
800 }
801
802 | fail:
803 for (int j = 8; j < nargv; j += 1)

|7 Loop ition is false. i on line 805
804 free(argv[il);
805 free(argv);
806 free(stderr_buf);
807 free(dhd_buf);

8 Pass-by-value argument in function call is undefined J
808
809 return false;
810 }
811
812

o013

2011/4/6

http://tratt.net/laurie/

Static analysis (2).

~

437

439
440
441
442
443
444
445
446

447
448

449
450
451
452
453
454
455
456

argv[i] = arg;
}
argv[nargv] = NULL;
// Setup a buffer into which we will read stderr from any child processes
size_t stderr_buf_alloc = STDERR_BUF_ALLOC;
char *stderr_buf = malloc(stderr_buf_alloc);
if (stderr_buf == NULL) {
/4| Taking false branch
syslog(LOG_CRLT, "try_groups: malloc: %m");
exit(1);
}

// We now need to record where the actual message starts.

off_t mf_body_off = lseek(fd, @, SEEK_CUR);
if (mf_body_off == -1) {

5| Taking true branch

syslog(L0OG_ERR, "Error when ftell'ing from '%s'", msg_path);
goto fail;

/6 Control jumps to line 803
}
// Read in the messages header, doctoring it along the way to make it
// suitable for being searched with regular expressions. The doctoring is
// very simple. Individual headers are often split over multiple lines: we

// merge such lines together

size t dhb buf alloc = HEADER BUF:

2011/4/6

http://tratt.net/laurie/

Static analysis (3).

@ Intuition: do a ‘fuzzy match’ against a malware’s semantic
signature and that of a new binary.

L. Tratt http: ratt.net/laurie Static analysis and malware 2011/4/6 10/21

http://tratt.net/laurie/

Static analysis (3).

@ Intuition: do a ‘fuzzy match’ against a malware’s semantic
signature and that of a new binary.

@ If they match: it's a malware; otherwise it's OK.
@ (We might need to play around with the ‘fuzziness’ a bit, but it
should work.)

L. Tratt http://tratt.net/laurie/ Static analysis and malware 2011/4/6 10/21

http://tratt.net/laurie/

Static analysis (3).

@ Intuition: do a ‘fuzzy match’ against a malware’s semantic
signature and that of a new binary.

@ If they match: it's a malware; otherwise it's OK.

@ (We might need to play around with the ‘fuzziness’ a bit, but it
should work.)

@ My argument: if you deploy this tomorrow, by the following
day it will have been irrevocably circumvented.

@ Why?

L. Tratt http://tratt.net/laurie/ Static analysis and malware 2011/4/6 10/21

http://tratt.net/laurie/

Static analysis assumptions.

@ Underlying assumption of static analysis:

L. Tratt http://tratt.net/laurie Static analysis and malware 2011/4/6 11/21

http://thebunnymaker.blogspot.com/
http://tratt.net/laurie/

Static analysis assumptions.

@ Underlying assumption of static analysis: programs are amenable
to static analysis techniques and when a part of a program
violates a static analysis technique, users are happy to adjust their

program accordingly.

2011/4/6 11/21

Static analysis and malware

L. Tratt http://tratt.net/laurie/

http://thebunnymaker.blogspot.com/
http://tratt.net/laurie/

Static analysis assumptions.

@ Underlying assumption of static analysis: programs are amenable
to static analysis techniques and when a part of a program
violates a static analysis technique, users are happy to adjust their

program accordingly.

Bunnies and photo: Anna Hull. (CC BY-NC-ND 3.0)

The pink fluffy bunny assumption.

Static analysis and malware 2011/4/6

L. Tratt http://tratt.net/laurie

http://thebunnymaker.blogspot.com/
http://tratt.net/laurie/

Static analysis assumptions (2).

@ The pink fluffy bunny assumption breaks down with malware:

L. Tratt http://tratt.net/laurie Static analysis and malware 2011/4/6 12/21

http://tratt.net/laurie/

Static analysis assumptions (2).

@ The pink fluffy bunny assumption breaks down with malware:
malware authors will find and exploit any and all weak points.

L. Tratt http://tratt.net/laurie/ Static analysis and malware 2011/4/6 12/21

http://tratt.net/laurie/

Static analysis assumptions (2).

@ The pink fluffy bunny assumption breaks down with malware:
malware authors will find and exploit any and all weak points.

The hostile assumption.

L. Tratt http://tratt.net/laurie/ Static analysis and malware 2011/4/6

http://tratt.net/laurie/

Can we defeat the static analysis of malware?

@ Consider a self encrypting malware.
@ Consists of an initial decoder and an encrypted body.

@ The following ARM(ish) code decrypts the data (w/length Ip) and
stores it back for execution.

MOV RO, #0 int xbody = ...;

MOV R1, BODY for (int i = 0; 1 < 1lp; 1 += 1) {
L: LDR R2, R1[RO] int t = bodyl[il;

XOR R2, R2, f#constant t =t ” constant;

STR R2, R2[RO] body[i] = t;

ADD RO, RO, #4

CMP RO, 1p

BLT L }
BODY:

encrypted malware body

L. Tratt http: ratt.net/laurie/ Static analysis and malware 2011/4/6

http://tratt.net/laurie/

Can we defeat the static analysis of malware?

@ Consider a self encrypting malware.
@ Consists of an initial decoder and an encrypted body.

@ The following ARM(ish) code decrypts the data (w/length Ip) and
stores it back for execution.

MOV RO, #0 int xbody = ...;

MOV R1, BODY for (int i = 0; 1 < 1lp; 1 += 1) {
L: LDR R2, R1[RO] int t = bodyl[il;

XOR R2, R2, #constant t =t ” constant;

STR R2, R2[RO] body[i] = t;

ADD RO, RO, #4

CMP RO, 1p

BLT L }
BODY:

encrypted malware body

L. Tratt http: ratt.net/laurie/ Static analysis and malware 2011/4/6

http://tratt.net/laurie/

Can we defeat the static analysis of malware?

@ Consider a self encrypting malware.
@ Consists of an initial decoder and an encrypted body.

@ The following ARM(ish) code decrypts the data (w/length Ip) and
stores it back for execution.

MOV RO, #0 int xbody = ...;

MOV R1, BODY for (int i = 0; 1 < 1lp; 1 += 1) {
L: LDR R2, R1[RO] int t = bodyl[il;

XOR R2, R2, f#constant t =t ” constant;

STR R2, R2[RO] body[i] = t;

ADD RO, RO, #4

CMP RO, 1p

BLT L }
BODY:

encrypted malware body

@ What's its semantic signature?

L. Tratt http: ratt.net/laurie/ Static analysis and malware 2011/4/6

http://tratt.net/laurie/

Can we defeat the static analysis of malware (2)?

@ First thought: the decrypter is basically an XOR in a loop...

int xbody = ...;

for (int i = 0; 1 < 1lp; 1 += 1) {
int t = bodyl[i];
t = t ~ constant;
body[i] = t;

}

@ ...and body points to a constant chunk of data.

2011/4/6

Static analysis and malware

L. Tratt http://tratt.net/laurie/

http://tratt.net/laurie/

Can we defeat the static analysis of malware (2)?

@ First thought: the decrypter is basically an XOR in a loop...
int xbody = ...;
for (int i = 0; 1 < 1lp; 1 += 1) {
int t = bodyl[i];
t = t ~ constant;
body[i] = t;
}
@ ...and body points to a constant chunk of data.

@ Should be quite easy to statically analyse and obtain a signature.

2011/4/6 14/21

Static analysis and malware

L. Tratt http://tratt.net/laurie/

http://tratt.net/laurie/

Can we defeat the static analysis of malware (3)?

@ The decryption key is central.
@ It must be a constant.

@ Pink fluffy bunny assumption: the key must be transparently
contained in the binary.

L. Tratt http://tratt.net/laurie/ Static analysis and malware 2011/4/6 15/21

http://tratt.net/laurie/

Can we defeat the static analysis of malware (3)?

@ The decryption key is central.
@ |t must be a constant.
@ Pink fluffy bunny assumption: the key must be transparently
contained in the binary.
int xbody = ...;
for (int i = 0; i < 1lp; 1 += 1) {
int t = bodyl[il];

t =t ” constant;
body[i] = t;

L. Tratt http://tratt.net/laurie/ Static analysis and malware 2011/4/6

http://tratt.net/laurie/

Can we defeat the static analysis of malware (3)?

@ The decryption key is central.
@ It must be a constant.

@ Pink fluffy bunny assumption: the key must be transparently
contained in the binary.

int xbody = ...;

for (int i = 0; i < 1lp; 1 += 1) {
int t = bodyl[i];
t =t ” constant;
body[i] = t;

}

@ Hostile assumption: the key can be opaquely calculated by the
binary.

L. Tratt http://tratt.net/laurie/ Static analysis and malware 2011/4/6 15/21

http://tratt.net/laurie/

Hiding the key.

@ Can we hide the key so that it can’t easily be uncovered?

L. Tratt http: ratt.net/laurie Static analysis and malware 2011/4/6 16/21

http://tratt.net/laurie/

Hiding the key.

Can we hide the key so that it can’t easily be uncovered?
Let’s make it a lot harder:

int k;
for (int i = 0; 1 < MAXINT; i += 1) {
if (md5(i) == constantl && sha256(i) == constant2) {
k = 1i;
break;

}

constantl and constant?2 are in the binary, but aren’t directly
related to k.

To statically analyse that, we need to analyse the MD5 and
SHA256 functions.

L. Tratt http: ratt.net/laurie/ Static analysis and malware 2011/4/6 16/21

http://tratt.net/laurie/

Hiding the key.

@ Can we hide the key so that it can’t easily be uncovered?
@ Let’s make it a lot harder:

int k;
for (int i = 0; 1 < MAXINT; i += 1) {
if (md5(i) == constantl && sha256(i) == constant2) {
k = 1i;
break;

}

@ constantl and constant?2 are in the binary, but aren’t directly
related to k.

@ To statically analyse that, we need to analyse the MD5 and
SHA256 functions.

@ Hash functions are meant to be hard to analyse; but not without
their weaknesses.

L. Tratt http://tratt.net/laurie/ Static analysis and malware 2011/4/6 16/21

http://tratt.net/laurie/

Hiding the key.

@ Can we hide the key so that it can’t easily be uncovered?

@ Let’s make it a lot harder:
int k;

for (int i = 0; 1 < MAXINT; i += 1) {
if (md5(i) == constantl && sha256(i) == constant2) {
k = 1i;
break;

}
}

@ constantl and constant?2 are in the binary, but aren’t directly
related to k.

@ To statically analyse that, we need to analyse the MD5 and
SHA256 functions.

@ Hash functions are meant to be hard to analyse; but not without
their weaknesses.

@ Take the hostile assumption: make it harder!

L. Tratt http://tratt.net/laurie/ Static analysis and malware 2011/4/6 16/21

http://tratt.net/laurie/

Hiding the key (2).

@ Try statically analyzing random data:

int k;
f = open("/dev/random", "r");
while (true) {
int t = readc(f) | (readc(f)«8) | (readc(f)«l6) | (readc(f)«24);
if (md5(t) == constantl && sha256(t) == constant2) {
k = t;
break;

}

@ Rough speed: in C, will find a key corresponding to the hash of a 5
character string on my laptop in under a minute.

L. Tratt http: t .net/laurie/ Static analysis and malware 2011/4/6 17/21

http://tratt.net/laurie/

Hiding the key (2).

@ Try statically analyzing random data:

int k;
f = open("/dev/random", "r");
while (true) {

int t = readc(f) | (readc(f)«8) | (readc(f)«l6) | (readc(f)«24);
if (md5(t) == constantl && sha256(t) == constant2) {

k = t;

break;

}

@ Rough speed: in C, will find a key corresponding to the hash of a 5
character string on my laptop in under a minute.

@ Moser, Kreugel, and Kirda show examples of opaque constants
whose static solution would be equivalent to solving an NP-hard
problem.

L. Tratt http: ratt.net/laurie/ Static analysis and malware 2011/4/6 17/21

http://tratt.net/laurie/

Can limited dynamic analysis help?

@ Opaque constants defeat static analysis on its own.

@ Can we dynamically run the malware decrypter, stop it, and then
semantically analyse the decrypted malware?

L. Tratt http://tratt.net/laurie/ Static analysis and malware 2011/4/6 18/21

http://tratt.net/laurie/

Can limited dynamic analysis help?

@ Opaque constants defeat static analysis on its own.

@ Can we dynamically run the malware decrypter, stop it, and then
semantically analyse the decrypted malware?

@ Take the hostile assumption: will embed more than one layer of
hard to analyse encryption.

L. Tratt http://tratt.net/laurie/ Static analysis and malware 2011/4/6 18/21

http://tratt.net/laurie/

What are the limits of static analysis?

@ Assertion: static analysis of malware on its own would quickly be
circumvented (by the hostile assumption).

@ Could static analysis have any use in malware detection?

L. Tratt http://tratt.net/laurie/ Static analysis and malware 2011/4/6 19/21

http://tratt.net/laurie/

What are the limits of static analysis?

@ Assertion: static analysis of malware on its own would quickly be
circumvented (by the hostile assumption).

@ Could static analysis have any use in malware detection? Yes!

L. Tratt http://tratt.net/laurie/ Static analysis and malware 2011/4/6 19/21

http://tratt.net/laurie/

What are the limits of static analysis?

@ Assertion: static analysis of malware on its own would quickly be
circumvented (by the hostile assumption).
@ Could static analysis have any use in malware detection? Yes!
@ In security labs analyzing malware (every tool helps).

L. Tratt http://tratt.net/laurie/ Static analysis and malware 2011/4/6 19/21

http://tratt.net/laurie/

What are the limits of static analysis?

@ Assertion: static analysis of malware on its own would quickly be
circumvented (by the hostile assumption).
@ Could static analysis have any use in malware detection? Yes!

@ In security labs analyzing malware (every tool helps).
@ In an interleaved dynamic / static analysis.

L. Tratt http://tratt.net/laurie/ Static analysis and malware 2011/4/6 19/21

http://tratt.net/laurie/

Further reading

@ Static Analysis for Malware Detection Andreas Moser, Christopher
Kruegel, Engin Kirda.

L. Tratt http://tratt.net/laurie/ Static analysis and malware 2011/4/6 20/21

http://tratt.net/laurie/

@ Static analysis of malware has assumed a pink fluffy bunny world.

@ In a hostile world, everything changes: malware authors will
create self-encrypted malware using opaque constants.

L. Tratt http: ratt.net/laurie/ Static analysis and malware 2011/4/6 21/21

http://tratt.net/laurie/

@ Static analysis of malware has assumed a pink fluffy bunny world.

@ In a hostile world, everything changes: malware authors will
create self-encrypted malware using opaque constants.

@ Butthere are uses for it, but not the ones that there first appeared
to be.

L. Tratt http://tratt.net/laurie/ Static analysis and malware 2011/4/6 21/21

http://tratt.net/laurie/

@ Static analysis of malware has assumed a pink fluffy bunny world.

@ In a hostile world, everything changes: malware authors will
create self-encrypted malware using opaque constants.

@ Butthere are uses for it, but not the ones that there first appeared
to be.

@ A general rule: anything that relies on static analysis for security
must bear in mind the hostile assumption at all times.

L. Tratt http://tratt.net/laurie/ Static analysis and malware 2011/4/6 21/21

http://tratt.net/laurie/

@ Static analysis of malware has assumed a pink fluffy bunny world.

@ In a hostile world, everything changes: malware authors will
create self-encrypted malware using opaque constants.

@ Butthere are uses for it, but not the ones that there first appeared
to be.

@ A general rule: anything that relies on static analysis for security
must bear in mind the hostile assumption at all times.

Thanks for listening

L. Tratt http://tratt.net/laurie/ Static analysis and malware 2011/4/6 21/21

http://tratt.net/laurie/

