
What role for static analysis in malware detection?

Laurence Tratt
http://tratt.net/laurie/

Middlesex University

With thanks to David Clark

2011/4/6

L. Tratt http://tratt.net/laurie/ Static analysis and malware 2011/4/6 1 / 21

http://tratt.net/laurie/
http://tratt.net/laurie/

Overview

1 What is malware and how do we traditionally detect it?
2 What is static analysis?
3 How does static analysis promise to help detect malware?
4 How far can we go with it?

L. Tratt http://tratt.net/laurie/ Static analysis and malware 2011/4/6 2 / 21

http://tratt.net/laurie/

What is malware?

Malign software: infiltrates and subverts.
Uses from spam e-mail botnets to IP theft.

Executive summary: malware is bad.

L. Tratt http://tratt.net/laurie/ Static analysis and malware 2011/4/6 3 / 21

http://tratt.net/laurie/

What is malware?

Malign software: infiltrates and subverts.
Uses from spam e-mail botnets to IP theft.
Executive summary: malware is bad.

L. Tratt http://tratt.net/laurie/ Static analysis and malware 2011/4/6 3 / 21

http://tratt.net/laurie/

How do we detect malware?

Traditionally: signature (‘fingerprint’) detection.
If a binary matches a malware signature, it’s a bad ’un.
[Note: the signature may be for part(s) of a malware.]

L. Tratt http://tratt.net/laurie/ Static analysis and malware 2011/4/6 4 / 21

http://tratt.net/laurie/

How to defeat traditional signature matching.

Original malware:
MOV R0, #3 x := 3
BL DO_SOMETHING_WITH_R0 f(x)

Give it hash H.

Malware author (remember: bad, not mad) obfuscates it to:
MOV R0, #3 x := 3
MOV R1, #4 y := 4
BL DO_SOMETHING_WITH_R0 f(x)

Will have hash H 0 where H 6= H 0.

L. Tratt http://tratt.net/laurie/ Static analysis and malware 2011/4/6 5 / 21

http://tratt.net/laurie/

How to defeat traditional signature matching.

Original malware:
MOV R0, #3 x := 3
BL DO_SOMETHING_WITH_R0 f(x)

Give it hash H.
Malware author (remember: bad, not mad) obfuscates it to:
MOV R0, #3 x := 3
MOV R1, #4 y := 4
BL DO_SOMETHING_WITH_R0 f(x)

Will have hash H 0 where H 6= H 0.

L. Tratt http://tratt.net/laurie/ Static analysis and malware 2011/4/6 5 / 21

http://tratt.net/laurie/

How to defeat traditional signature matching (2).

Idea: can signatures be like regular expressions, ‘skipping’ over
irrelevant stuff?

Original malware:
MOV R0, #3 x := 3
BL DO_SOMETHING_WITH_R0 f(x)

Malware author obfuscates it to:
MOV R0, #1 x := 1
ADD R0, R0, #2 x += 2
BL DO_SOMETHING_WITH_R0 f(x)

No regular expression matching will match that!
Metamorphic / polymorphic malware on the rise.
Traditional signature detection ever less effective.

L. Tratt http://tratt.net/laurie/ Static analysis and malware 2011/4/6 6 / 21

http://tratt.net/laurie/

How to defeat traditional signature matching (2).

Idea: can signatures be like regular expressions, ‘skipping’ over
irrelevant stuff?
Original malware:
MOV R0, #3 x := 3
BL DO_SOMETHING_WITH_R0 f(x)

Malware author obfuscates it to:
MOV R0, #1 x := 1
ADD R0, R0, #2 x += 2
BL DO_SOMETHING_WITH_R0 f(x)

No regular expression matching will match that!
Metamorphic / polymorphic malware on the rise.
Traditional signature detection ever less effective.

L. Tratt http://tratt.net/laurie/ Static analysis and malware 2011/4/6 6 / 21

http://tratt.net/laurie/

How to defeat traditional signature matching (2).

Idea: can signatures be like regular expressions, ‘skipping’ over
irrelevant stuff?
Original malware:
MOV R0, #3 x := 3
BL DO_SOMETHING_WITH_R0 f(x)

Malware author obfuscates it to:
MOV R0, #1 x := 1
ADD R0, R0, #2 x += 2
BL DO_SOMETHING_WITH_R0 f(x)

No regular expression matching will match that!
Metamorphic / polymorphic malware on the rise.
Traditional signature detection ever less effective.

L. Tratt http://tratt.net/laurie/ Static analysis and malware 2011/4/6 6 / 21

http://tratt.net/laurie/

How to defeat traditional signature matching (2).

Idea: can signatures be like regular expressions, ‘skipping’ over
irrelevant stuff?
Original malware:
MOV R0, #3 x := 3
BL DO_SOMETHING_WITH_R0 f(x)

Malware author obfuscates it to:
MOV R0, #1 x := 1
ADD R0, R0, #2 x += 2
BL DO_SOMETHING_WITH_R0 f(x)

No regular expression matching will match that!

Metamorphic / polymorphic malware on the rise.
Traditional signature detection ever less effective.

L. Tratt http://tratt.net/laurie/ Static analysis and malware 2011/4/6 6 / 21

http://tratt.net/laurie/

How to defeat traditional signature matching (2).

Idea: can signatures be like regular expressions, ‘skipping’ over
irrelevant stuff?
Original malware:
MOV R0, #3 x := 3
BL DO_SOMETHING_WITH_R0 f(x)

Malware author obfuscates it to:
MOV R0, #1 x := 1
ADD R0, R0, #2 x += 2
BL DO_SOMETHING_WITH_R0 f(x)

No regular expression matching will match that!
Metamorphic / polymorphic malware on the rise.
Traditional signature detection ever less effective.

L. Tratt http://tratt.net/laurie/ Static analysis and malware 2011/4/6 6 / 21

http://tratt.net/laurie/

A proposed approach.

Traditional signature detection looks at program syntax.

What about the programs semantics?
Intuition: a malware’s core semantics must be the same before
and after obfuscation.
So: we need to statically analyse its semantics!

L. Tratt http://tratt.net/laurie/ Static analysis and malware 2011/4/6 7 / 21

http://tratt.net/laurie/

A proposed approach.

Traditional signature detection looks at program syntax.
What about the programs semantics?
Intuition: a malware’s core semantics must be the same before
and after obfuscation.
So:

we need to statically analyse its semantics!

L. Tratt http://tratt.net/laurie/ Static analysis and malware 2011/4/6 7 / 21

http://tratt.net/laurie/

A proposed approach.

Traditional signature detection looks at program syntax.
What about the programs semantics?
Intuition: a malware’s core semantics must be the same before
and after obfuscation.
So: we need to statically analyse its semantics!

L. Tratt http://tratt.net/laurie/ Static analysis and malware 2011/4/6 7 / 21

http://tratt.net/laurie/

Static analysis.

Looking at a static program (source code or binary) and
uncovering information about it.
Take LLVM’s static analyser (scan-build). Spot the bug?

char *expand_path(const char *path)
{

char *exp_path;
// If path begins with "~/", we expand that to the users home directory.
if (strncmp(path, HOME_PFX, strlen(HOME_PFX)) == 0) {

struct passwd *pw_ent = getpwuid(geteuid());
if (pw_ent == NULL) {

free(exp_path);
return NULL;

}

if (asprintf(&exp_path, "%s%s%s", pw_ent->pw_dir, DIR_SEP, path +
strlen(HOME_PFX)) == -1)

errx(1, "expand_path: asprintf: unable to allocate memory");
}
else {

if (asprintf(&exp_path, "%s", path) == -1)
errx(1, "expand_path: asprintf: unable to allocate memory");

}

return exp_path;
}

L. Tratt http://tratt.net/laurie/ Static analysis and malware 2011/4/6 8 / 21

http://tratt.net/laurie/

Static analysis.

Looking at a static program (source code or binary) and
uncovering information about it.
Take LLVM’s static analyser (scan-build). Spot the bug?

char *expand_path(const char *path)
{

char *exp_path;
// If path begins with "~/", we expand that to the users home directory.
if (strncmp(path, HOME_PFX, strlen(HOME_PFX)) == 0) {

struct passwd *pw_ent = getpwuid(geteuid());
if (pw_ent == NULL) {

free(exp_path);
return NULL;

}

if (asprintf(&exp_path, "%s%s%s", pw_ent->pw_dir, DIR_SEP, path +
strlen(HOME_PFX)) == -1)

errx(1, "expand_path: asprintf: unable to allocate memory");
}
else {

if (asprintf(&exp_path, "%s", path) == -1)
errx(1, "expand_path: asprintf: unable to allocate memory");

}

return exp_path;
}

L. Tratt http://tratt.net/laurie/ Static analysis and malware 2011/4/6 8 / 21

http://tratt.net/laurie/

Static analysis (2).

L. Tratt http://tratt.net/laurie/ Static analysis and malware 2011/4/6 9 / 21

http://tratt.net/laurie/

Static analysis (2).

L. Tratt http://tratt.net/laurie/ Static analysis and malware 2011/4/6 9 / 21

http://tratt.net/laurie/

Static analysis (3).

Intuition: do a ‘fuzzy match’ against a malware’s semantic
signature and that of a new binary.

If they match: it’s a malware; otherwise it’s OK.
(We might need to play around with the ‘fuzziness’ a bit, but it
should work.)
My argument: if you deploy this tomorrow, by the following
day it will have been irrevocably circumvented.
Why?

L. Tratt http://tratt.net/laurie/ Static analysis and malware 2011/4/6 10 / 21

http://tratt.net/laurie/

Static analysis (3).

Intuition: do a ‘fuzzy match’ against a malware’s semantic
signature and that of a new binary.
If they match: it’s a malware; otherwise it’s OK.
(We might need to play around with the ‘fuzziness’ a bit, but it
should work.)

My argument: if you deploy this tomorrow, by the following
day it will have been irrevocably circumvented.
Why?

L. Tratt http://tratt.net/laurie/ Static analysis and malware 2011/4/6 10 / 21

http://tratt.net/laurie/

Static analysis (3).

Intuition: do a ‘fuzzy match’ against a malware’s semantic
signature and that of a new binary.
If they match: it’s a malware; otherwise it’s OK.
(We might need to play around with the ‘fuzziness’ a bit, but it
should work.)
My argument: if you deploy this tomorrow, by the following
day it will have been irrevocably circumvented.
Why?

L. Tratt http://tratt.net/laurie/ Static analysis and malware 2011/4/6 10 / 21

http://tratt.net/laurie/

Static analysis assumptions.

Underlying assumption of static analysis:

programs are amenable
to static analysis techniques and when a part of a program
violates a static analysis technique, users are happy to adjust their
program accordingly.

Bunnies and photo: Anna Hull. (CC BY-NC-ND 3.0)

The pink fluffy bunny assumption.

L. Tratt http://tratt.net/laurie/ Static analysis and malware 2011/4/6 11 / 21

http://thebunnymaker.blogspot.com/
http://tratt.net/laurie/

Static analysis assumptions.

Underlying assumption of static analysis: programs are amenable
to static analysis techniques and when a part of a program
violates a static analysis technique, users are happy to adjust their
program accordingly.

Bunnies and photo: Anna Hull. (CC BY-NC-ND 3.0)

The pink fluffy bunny assumption.

L. Tratt http://tratt.net/laurie/ Static analysis and malware 2011/4/6 11 / 21

http://thebunnymaker.blogspot.com/
http://tratt.net/laurie/

Static analysis assumptions.

Underlying assumption of static analysis: programs are amenable
to static analysis techniques and when a part of a program
violates a static analysis technique, users are happy to adjust their
program accordingly.

Bunnies and photo: Anna Hull. (CC BY-NC-ND 3.0)

The pink fluffy bunny assumption.

L. Tratt http://tratt.net/laurie/ Static analysis and malware 2011/4/6 11 / 21

http://thebunnymaker.blogspot.com/
http://tratt.net/laurie/

Static analysis assumptions (2).

The pink fluffy bunny assumption breaks down with malware:

malware authors will find and exploit any and all weak points.

The hostile assumption.

L. Tratt http://tratt.net/laurie/ Static analysis and malware 2011/4/6 12 / 21

http://tratt.net/laurie/

Static analysis assumptions (2).

The pink fluffy bunny assumption breaks down with malware:
malware authors will find and exploit any and all weak points.

The hostile assumption.

L. Tratt http://tratt.net/laurie/ Static analysis and malware 2011/4/6 12 / 21

http://tratt.net/laurie/

Static analysis assumptions (2).

The pink fluffy bunny assumption breaks down with malware:
malware authors will find and exploit any and all weak points.

The hostile assumption.

L. Tratt http://tratt.net/laurie/ Static analysis and malware 2011/4/6 12 / 21

http://tratt.net/laurie/

Can we defeat the static analysis of malware?

Consider a self encrypting malware.
Consists of an initial decoder and an encrypted body.
The following ARM(ish) code decrypts the data (w/length lp) and
stores it back for execution.

MOV R0, #0 int *body = ...;
MOV R1, BODY for (int i = 0; i < lp; i += 1) {

L: LDR R2, R1[R0] int t = body[i];
XOR R2, R2, #constant t = t ^ constant;
STR R2, R2[R0] body[i] = t;
ADD R0, R0, #4
CMP R0, lp
BLT L }

BODY:
encrypted malware body

What’s its semantic signature?

L. Tratt http://tratt.net/laurie/ Static analysis and malware 2011/4/6 13 / 21

http://tratt.net/laurie/

Can we defeat the static analysis of malware?

Consider a self encrypting malware.
Consists of an initial decoder and an encrypted body.
The following ARM(ish) code decrypts the data (w/length lp) and
stores it back for execution.

MOV R0, #0 int *body = ...;
MOV R1, BODY for (int i = 0; i < lp; i += 1) {

L: LDR R2, R1[R0] int t = body[i];
XOR R2, R2, #constant t = t ^ constant;
STR R2, R2[R0] body[i] = t;
ADD R0, R0, #4
CMP R0, lp
BLT L }

BODY:
encrypted malware body

What’s its semantic signature?

L. Tratt http://tratt.net/laurie/ Static analysis and malware 2011/4/6 13 / 21

http://tratt.net/laurie/

Can we defeat the static analysis of malware?

Consider a self encrypting malware.
Consists of an initial decoder and an encrypted body.
The following ARM(ish) code decrypts the data (w/length lp) and
stores it back for execution.

MOV R0, #0 int *body = ...;
MOV R1, BODY for (int i = 0; i < lp; i += 1) {

L: LDR R2, R1[R0] int t = body[i];
XOR R2, R2, #constant t = t ^ constant;
STR R2, R2[R0] body[i] = t;
ADD R0, R0, #4
CMP R0, lp
BLT L }

BODY:
encrypted malware body

What’s its semantic signature?

L. Tratt http://tratt.net/laurie/ Static analysis and malware 2011/4/6 13 / 21

http://tratt.net/laurie/

Can we defeat the static analysis of malware (2)?

First thought: the decrypter is basically an XOR in a loop...
int *body = ...;
for (int i = 0; i < lp; i += 1) {

int t = body[i];
t = t ^ constant;
body[i] = t;

}

...and body points to a constant chunk of data.

Should be quite easy to statically analyse and obtain a signature.

L. Tratt http://tratt.net/laurie/ Static analysis and malware 2011/4/6 14 / 21

http://tratt.net/laurie/

Can we defeat the static analysis of malware (2)?

First thought: the decrypter is basically an XOR in a loop...
int *body = ...;
for (int i = 0; i < lp; i += 1) {

int t = body[i];
t = t ^ constant;
body[i] = t;

}

...and body points to a constant chunk of data.
Should be quite easy to statically analyse and obtain a signature.

L. Tratt http://tratt.net/laurie/ Static analysis and malware 2011/4/6 14 / 21

http://tratt.net/laurie/

Can we defeat the static analysis of malware (3)?

The decryption key is central.
It must be a constant.
Pink fluffy bunny assumption: the key must be transparently
contained in the binary.

int *body = ...;
for (int i = 0; i < lp; i += 1) {

int t = body[i];
t = t ^ constant;
body[i] = t;

}

Hostile assumption: the key can be opaquely calculated by the
binary.

L. Tratt http://tratt.net/laurie/ Static analysis and malware 2011/4/6 15 / 21

http://tratt.net/laurie/

Can we defeat the static analysis of malware (3)?

The decryption key is central.
It must be a constant.
Pink fluffy bunny assumption: the key must be transparently
contained in the binary.
int *body = ...;
for (int i = 0; i < lp; i += 1) {

int t = body[i];
t = t ^ constant;
body[i] = t;

}

Hostile assumption: the key can be opaquely calculated by the
binary.

L. Tratt http://tratt.net/laurie/ Static analysis and malware 2011/4/6 15 / 21

http://tratt.net/laurie/

Can we defeat the static analysis of malware (3)?

The decryption key is central.
It must be a constant.
Pink fluffy bunny assumption: the key must be transparently
contained in the binary.
int *body = ...;
for (int i = 0; i < lp; i += 1) {

int t = body[i];
t = t ^ constant;
body[i] = t;

}

Hostile assumption: the key can be opaquely calculated by the
binary.

L. Tratt http://tratt.net/laurie/ Static analysis and malware 2011/4/6 15 / 21

http://tratt.net/laurie/

Hiding the key.

Can we hide the key so that it can’t easily be uncovered?

Let’s make it a lot harder:
int k;
for (int i = 0; i < MAXINT; i += 1) {

if (md5(i) == constant1 && sha256(i) == constant2) {
k = i;
break;

}
}

constant1 and constant2 are in the binary, but aren’t directly
related to k.
To statically analyse that, we need to analyse the MD5 and
SHA256 functions.
Hash functions are meant to be hard to analyse; but not without
their weaknesses.
Take the hostile assumption: make it harder!

L. Tratt http://tratt.net/laurie/ Static analysis and malware 2011/4/6 16 / 21

http://tratt.net/laurie/

Hiding the key.

Can we hide the key so that it can’t easily be uncovered?
Let’s make it a lot harder:
int k;
for (int i = 0; i < MAXINT; i += 1) {

if (md5(i) == constant1 && sha256(i) == constant2) {
k = i;
break;

}
}

constant1 and constant2 are in the binary, but aren’t directly
related to k.
To statically analyse that, we need to analyse the MD5 and
SHA256 functions.

Hash functions are meant to be hard to analyse; but not without
their weaknesses.
Take the hostile assumption: make it harder!

L. Tratt http://tratt.net/laurie/ Static analysis and malware 2011/4/6 16 / 21

http://tratt.net/laurie/

Hiding the key.

Can we hide the key so that it can’t easily be uncovered?
Let’s make it a lot harder:
int k;
for (int i = 0; i < MAXINT; i += 1) {

if (md5(i) == constant1 && sha256(i) == constant2) {
k = i;
break;

}
}

constant1 and constant2 are in the binary, but aren’t directly
related to k.
To statically analyse that, we need to analyse the MD5 and
SHA256 functions.
Hash functions are meant to be hard to analyse; but not without
their weaknesses.

Take the hostile assumption: make it harder!

L. Tratt http://tratt.net/laurie/ Static analysis and malware 2011/4/6 16 / 21

http://tratt.net/laurie/

Hiding the key.

Can we hide the key so that it can’t easily be uncovered?
Let’s make it a lot harder:
int k;
for (int i = 0; i < MAXINT; i += 1) {

if (md5(i) == constant1 && sha256(i) == constant2) {
k = i;
break;

}
}

constant1 and constant2 are in the binary, but aren’t directly
related to k.
To statically analyse that, we need to analyse the MD5 and
SHA256 functions.
Hash functions are meant to be hard to analyse; but not without
their weaknesses.
Take the hostile assumption: make it harder!

L. Tratt http://tratt.net/laurie/ Static analysis and malware 2011/4/6 16 / 21

http://tratt.net/laurie/

Hiding the key (2).

Try statically analyzing random data:

int k;
f = open("/dev/random", "r");
while (true) {

int t = readc(f) | (readc(f)«8) | (readc(f)«16) | (readc(f)«24);
if (md5(t) == constant1 && sha256(t) == constant2) {

k = t;
break;

}
}

Rough speed: in C, will find a key corresponding to the hash of a 5
character string on my laptop in under a minute.

Moser, Kreugel, and Kirda show examples of opaque constants
whose static solution would be equivalent to solving an NP-hard
problem.

L. Tratt http://tratt.net/laurie/ Static analysis and malware 2011/4/6 17 / 21

http://tratt.net/laurie/

Hiding the key (2).

Try statically analyzing random data:

int k;
f = open("/dev/random", "r");
while (true) {

int t = readc(f) | (readc(f)«8) | (readc(f)«16) | (readc(f)«24);
if (md5(t) == constant1 && sha256(t) == constant2) {

k = t;
break;

}
}

Rough speed: in C, will find a key corresponding to the hash of a 5
character string on my laptop in under a minute.
Moser, Kreugel, and Kirda show examples of opaque constants
whose static solution would be equivalent to solving an NP-hard
problem.

L. Tratt http://tratt.net/laurie/ Static analysis and malware 2011/4/6 17 / 21

http://tratt.net/laurie/

Can limited dynamic analysis help?

Opaque constants defeat static analysis on its own.
Can we dynamically run the malware decrypter, stop it, and then
semantically analyse the decrypted malware?

Take the hostile assumption: will embed more than one layer of
hard to analyse encryption.

L. Tratt http://tratt.net/laurie/ Static analysis and malware 2011/4/6 18 / 21

http://tratt.net/laurie/

Can limited dynamic analysis help?

Opaque constants defeat static analysis on its own.
Can we dynamically run the malware decrypter, stop it, and then
semantically analyse the decrypted malware?
Take the hostile assumption: will embed more than one layer of
hard to analyse encryption.

L. Tratt http://tratt.net/laurie/ Static analysis and malware 2011/4/6 18 / 21

http://tratt.net/laurie/

What are the limits of static analysis?

Assertion: static analysis of malware on its own would quickly be
circumvented (by the hostile assumption).
Could static analysis have any use in malware detection?

Yes!
1 In security labs analyzing malware (every tool helps).
2 In an interleaved dynamic / static analysis.

L. Tratt http://tratt.net/laurie/ Static analysis and malware 2011/4/6 19 / 21

http://tratt.net/laurie/

What are the limits of static analysis?

Assertion: static analysis of malware on its own would quickly be
circumvented (by the hostile assumption).
Could static analysis have any use in malware detection? Yes!

1 In security labs analyzing malware (every tool helps).
2 In an interleaved dynamic / static analysis.

L. Tratt http://tratt.net/laurie/ Static analysis and malware 2011/4/6 19 / 21

http://tratt.net/laurie/

What are the limits of static analysis?

Assertion: static analysis of malware on its own would quickly be
circumvented (by the hostile assumption).
Could static analysis have any use in malware detection? Yes!

1 In security labs analyzing malware (every tool helps).

2 In an interleaved dynamic / static analysis.

L. Tratt http://tratt.net/laurie/ Static analysis and malware 2011/4/6 19 / 21

http://tratt.net/laurie/

What are the limits of static analysis?

Assertion: static analysis of malware on its own would quickly be
circumvented (by the hostile assumption).
Could static analysis have any use in malware detection? Yes!

1 In security labs analyzing malware (every tool helps).
2 In an interleaved dynamic / static analysis.

L. Tratt http://tratt.net/laurie/ Static analysis and malware 2011/4/6 19 / 21

http://tratt.net/laurie/

Further reading

Static Analysis for Malware Detection Andreas Moser, Christopher
Kruegel, Engin Kirda.

L. Tratt http://tratt.net/laurie/ Static analysis and malware 2011/4/6 20 / 21

http://tratt.net/laurie/

Summary

Static analysis of malware has assumed a pink fluffy bunny world.
In a hostile world, everything changes: malware authors will
create self-encrypted malware using opaque constants.

But there are uses for it, but not the ones that there first appeared
to be.
A general rule: anything that relies on static analysis for security
must bear in mind the hostile assumption at all times.

Thanks for listening

L. Tratt http://tratt.net/laurie/ Static analysis and malware 2011/4/6 21 / 21

http://tratt.net/laurie/

Summary

Static analysis of malware has assumed a pink fluffy bunny world.
In a hostile world, everything changes: malware authors will
create self-encrypted malware using opaque constants.
But there are uses for it, but not the ones that there first appeared
to be.

A general rule: anything that relies on static analysis for security
must bear in mind the hostile assumption at all times.

Thanks for listening

L. Tratt http://tratt.net/laurie/ Static analysis and malware 2011/4/6 21 / 21

http://tratt.net/laurie/

Summary

Static analysis of malware has assumed a pink fluffy bunny world.
In a hostile world, everything changes: malware authors will
create self-encrypted malware using opaque constants.
But there are uses for it, but not the ones that there first appeared
to be.
A general rule: anything that relies on static analysis for security
must bear in mind the hostile assumption at all times.

Thanks for listening

L. Tratt http://tratt.net/laurie/ Static analysis and malware 2011/4/6 21 / 21

http://tratt.net/laurie/

Summary

Static analysis of malware has assumed a pink fluffy bunny world.
In a hostile world, everything changes: malware authors will
create self-encrypted malware using opaque constants.
But there are uses for it, but not the ones that there first appeared
to be.
A general rule: anything that relies on static analysis for security
must bear in mind the hostile assumption at all times.

Thanks for listening

L. Tratt http://tratt.net/laurie/ Static analysis and malware 2011/4/6 21 / 21

http://tratt.net/laurie/

