S :
i‘i 3 .
25 ECOLE . =1 -\

POLYTECHNIQUE P) tidej (0 S<ccerlab.
MONTREAL @ SOftware Cost-effective Change

and Evolution Research Lab

OdMoMS: Multi-Objective Miniaturization of
Software

Giuliano (Giulio) Antoniol

With the collaboration of Nasir Ali, Wei Wu, Yann-Gaél
Guéhéneuc, Jane Huffman Hayes, Max Di Penta

COW London Feb. 23 1/25

http://www.polymtl.ca/index.html

Motivation

HAND HELD DEVICES

Resources vs. Feature vs. Customers

Our Goal

Maximize Customers’
Satisfaction

1

Better
Performance

(21111

MONTH
C

Code Size

Different Customers - Different
Features

Customer Relative Weight

Overall

What do customer want?
What do we already have ?
PREREQUIR + ReORe.

How can we make customers happy?
Static vs. dynamic information
Size vs. features vs. happy customers vs. CPU consumption

Miniaturization problem.
Case Study.

Conclusion.

COW London Feb. 23 7/25

PREREQIR in a Nutshell

" We need pre-requirement documents:
What the competitors’ systems do?
What our customers want?

" We obtain and vet a list of requirements from
diverse stakeholders.

" We structure requirements by mapping them into
a representation suitable for grouping via pattern-
recognition and similarity-based clustering.

COW London Feb. 23 8/25

Static Traceability Map

®
©
)

(©

The system may depend on external
components e.g., an LDAP server

COW London Feb. 23 9/25

Features to Size

" Traceabillity relations are tagged with:
Size information.
IDs of customers requiring the given feature.

" Features are divided into:
Compulsory.
Cherry on the pie.

" Selected features must lead to a compilable
system:

Extra code may be needed just to make sure that the
system compiles and runs.

COW London Feb. 23 10/25

Features to CPU Consumption

Assumption: CPU cycles/consumption is related to energy
consumption:

The higher the CPU consumption, the lower the battery life.

Binder’'s JP2 profiling tool: comprehensive calling-context
profiles:

Exact number of executed bytecodes for each calling context.

Caveat: modern hardware architecture prevent exact
estimation based on bytecode counting

Bytecode counting is a good approximation of run time
algorithmic complexity.

The lower the number of executed bytecodes, the lower the CPU
time, the lower the battery consumption.

COW London Feb. 23 11/25

Requirements to Features

Scenario 1

(feature a))\

/1

>

Scenario 2 >
(feature b) | =|

>

Scenario N Run System 3 Trace N J

(feature z)

COW London Feb. 23 12/25

Dynamic Information

Call tree:

Integrate call tree information for each executed feature
with static traceabillity relations to count executed
bytecodes.

Evaluate CPU consumption at method level:
accumulate into call tree top nodes the counts of
lower nodes

Top nodes thus stores sub-tree bytecode counts.

Top nodes account for all executed bytecodes, including
JARs and utility methods.

Caveat:
Some feature may not be completely implemented.

Some feature may not be executed due to missing
components.

COW London Feb. 23 13/25

Miniaturization Problem

= We would like to:
Minimize size and CPU consumption.
Maximize customer satisfaction.

" Constraints may be imposed on the search space

Max available memory, max CPU power, customers
that must be satisfied.

" Generate a Pareto surface:
Project Pareto surface onto a Pareto front.

" Final decision to the manager.

COW London Feb. 23 14/25

Miniaturization Problem (cont’d)

C ={cl...cL} L customers;
Each customer has "value"0 <v <V__ assigned;
A set of ComF compulsory features;

OF ={ F....F L} customer desired optional features;
Each F ={ fif-- fl.Ni} list customer i desired features;

A miniaturized program implements F' [1OF features;

We have a set of implementation units TU ={iu1...iu M} ;

There are properties P [JR" that must meet a set of

constraints HC —{hc .hc } where hc; is an interval

COW London Feb. 23 15/25

Miniaturization Problem (cont’d)

Traceability creates a function Impl that given a feature
assigns implementation units.

Each implementation unit has assigned properties values,
e.g., each method has assigned a size and a CPU
consumption.

The Customer Satisfaction Ratio (CSR) is defined as:

FnF'

l

xvi

v

max

L
2.

[

CSR(F") =

COW London Feb. 23 16/25

Miniaturization Problem (cont’d)

Maximize CSR(F’) means minimize —CSR(F’)

For a given set of features F’, the implementation units
and the overall properties are:

IU" = Impl(F O ComF)
P'= Prop|Impl(F' 0 ComF|)

We assume that properties are additive: size (CPU
consumption) of two units is the sum of units sizes (CPU
consumptions).

COW London Feb. 23 17/25

Miniaturization Problem (cont’d)

min{ —CSR(F"), Prop[lmpl(F'D ComF)]}

FT120F
such that :

p, | (pl...pl....pK) = Prop[lmpl(F'DComF)] :p; Uhc,

Notice that Prop(lmpl(F O ComF))

is actually an array of sizes and CPU consumptions.

Thus, a solution is a surface:
CSR = FUNC(size, CPU consumption)

COW London Feb. 23 18/25

Case Studies

= 350 questionnaires, 73 completed surveys

= Pooka V2.0 e-mail client:
208 classes.
20,868 methods.
245 KLOC:s.
599 pre-requirements.
30 traced features.
Code size 5.39 MB.

= S|P V1.0 audio/video internet phone:

1,771 classes.

31,302 methods.

486 KLOCs.

639 pre-requirements.
36 traced features.
Code size 27.3 MB.

COW London Feb. 23

19/25

NSGA-Il Parameters

= We used JMETAL:

Mutation probability 4%.
Crossover 90%.
Evaluation number 25,000.

" High iteration number to ensure that we did not
miss good solutions.

COW London Feb. 23 20/25

A: CSR =0.21
Features: 15/30

B: CSR =0.5
Features: 19/30

BC5{byte}

C: CSR =0.56
Features: 23/30

Pooka Projection CSR vs. Size

3.5e+06 T
Fooka Java Only ¥
Pooka Hith Libs O =
C 8
+ -
Je+B6 }i:lgttu-
Constraint with libs B Dﬂé?
2. 5e+B6 ﬁﬁgy_@
e
O
De+B6 | it
H|
H
gd
O
i}
1.5e+86 | = 3
A .(:E &ﬁéﬂ*
o Constraint without libs ﬂaﬁﬂmﬁﬁﬂﬁﬂﬂﬁ
¥
-
1e+B86 =L " . ¥ E AT
ol ;gﬁ-aé‘*
11 E
508000 IROE &
K*E?E
E
B ¥ I A
a 8.1 8,2 8.3 a.4 8.5

C5R
d S VY Bed JVAALARVAJAL A WJ5o fmm\J -_—u m.y .

8.6

A: CSR =0.20
Features: 10/36

B: CSR =0.49
Features: 23/36

C: CSR =0.56
Features: 31/36

BC5{byte}

fet+db

Ge+B6

Se+db6

de+B6

Je+B6

2e+B6

le+B6

SIP Projection CSR vs. Size

1
-SIP Hitheot.Libs...-*

SIP Hith Libs O

Constraint with libs -

Constraint without libs :nﬂﬁﬂdp ?m

C ﬂaﬂgm:
oo I:||:|:5':” %mﬁ*
- 4k W

1 | 1
B 8.1 8.2 8.3 8.4 8.3
C35R
[]

d S VY A VALAQGVAVUAL A W 1> 4 .

8.6

Pooka Surface

Fooka Fareto Surface

0.6
CSR-S

2e+009
3e+008

CPU Exec Bytectg+009
5e+009

6e+009

7e+008,00000 e Size(byte)

COW London Feb. 23 23/25

S o o -
- M W = n (o2}
colour gradient

Lessons Learned

" The miniaturization process is feasible but there
are challenges:
Traceability recovery and accuracy of traced links.

Collecting dynamic information is difficult:
= Missing or not 100% implemented features.

= CPU consumption difficult to run:
We are still completing SIP.

" Some system (SIP) may exhibit tangled
dependencies and there may be no sweet spot.

COW London Feb. 23 24/25

Conclusion

" The porting problem was modeled as a multi-
objective minimization problem.

" Equations can accommodate a wide range of
properties.

" The process can be automated thus saving
considerable manual effort in selecting features
to be ported:

Yet not in validating traceability links if links do not exist.

COW London Feb. 23 25/25

Questions

@©

a

@

COW London Feb. 23 26/25

	Slide 1
	Motivation
	Resources vs. Feature vs. Customers
	Our Goal
	Different Customers – Different Features
	Customer Relative Weight
	Overall
	 PREREQIR in a Nutshell
	Static Traceability Map
	Features to Size
	Features to CPU Consumption
	Requirements to Features
	Dynamic Information
	Miniaturization Problem
	Miniaturization Problem (cont’d)
	Slide 16
	Slide 17
	Slide 18
	Case Studies
	NSGA-II Parameters
	Pooka Projection CSR vs. Size
	SIP Projection CSR vs. Size
	Pooka Surface
	Lessons Learned
	Conclusion
	Questions

