
COW London Feb. 23 1/25

Giuliano (Giulio) Antoniol Giuliano (Giulio) Antoniol

With the collaboration of Nasir Ali, Wei Wu, With the collaboration of Nasir Ali, Wei Wu, Yann-Gaël Yann-Gaël
Guéhéneuc, Jane Huffman Hayes, Max Di PentaGuéhéneuc, Jane Huffman Hayes, Max Di Penta

OdMoMS: Multi-Objective Miniaturization of OdMoMS: Multi-Objective Miniaturization of

SoftwareSoftware

http://www.polymtl.ca/index.html

COW London Feb. 23 2/25

Motivation

COW London Feb. 23 3/25

Resources vs. Feature vs. Customers

COW London Feb. 23 4/25

Our Goal

COW London Feb. 23 5/25

Different Customers – Different
Features

COW London Feb. 23 6/25

Customer Relative Weight

COW London Feb. 23 7/25

OverallOverall

 What do customer want?What do customer want?
 What do we already have ?What do we already have ?
 PREREQUIR + ReORe.PREREQUIR + ReORe.

 How can we make customers happy?How can we make customers happy?
 Static vs. dynamic informationStatic vs. dynamic information
 Size vs. features vs. happy customers vs. CPU consumptionSize vs. features vs. happy customers vs. CPU consumption

 Miniaturization problem.Miniaturization problem.

 Case Study.Case Study.

 Conclusion.Conclusion.

COW London Feb. 23 8/25

 PREREQIR in a NutshellPREREQIR in a Nutshell

 We need pre-requirement documents:We need pre-requirement documents:
 What the competitors’ systems do?
 What our customers want?

 We obtain and vet a list of requirements from We obtain and vet a list of requirements from
diverse stakeholders.diverse stakeholders.

 We structure requirements by mapping them into We structure requirements by mapping them into
a representation suitable for grouping via pattern-a representation suitable for grouping via pattern-
recognition and similarity-based clustering.recognition and similarity-based clustering.

COW London Feb. 23 9/25

Static Traceability Map

Rl

mim

Ci

R2

Cp

Cr

mp1

mi1
fn

mr1

mri

The system may depend on external
components e.g., an LDAP server

COW London Feb. 23 10/25

Features to Size

 Traceability relations are tagged with:
 Size information.
 IDs of customers requiring the given feature.

 Features are divided into:
 Compulsory.
 Cherry on the pie.

 Selected features must lead to a compilable
system:
 Extra code may be needed just to make sure that the

system compiles and runs.

COW London Feb. 23 11/25

Features to CPU Consumption

 Assumption: CPU cycles/consumption is related to energy
consumption:
 The higher the CPU consumption, the lower the battery life.

 Binder’s JP2 profiling tool: comprehensive calling-context
profiles:
 Exact number of executed bytecodes for each calling context.

 Caveat: modern hardware architecture prevent exact
estimation based on bytecode counting

 Bytecode counting is a good approximation of run time
algorithmic complexity.
 The lower the number of executed bytecodes, the lower the CPU

time, the lower the battery consumption.

COW London Feb. 23 12/25

Requirements to Features

Scenario 1
(feature a)

Scenario N
(feature z)

Scenario 2
(feature b)

…

Run System

Trace 1

Trace 2

Trace N

…

COW London Feb. 23 13/25

Dynamic Information

 Call tree:
 Integrate call tree information for each executed feature

with static traceability relations to count executed
bytecodes.

 Evaluate CPU consumption at method level:
accumulate into call tree top nodes the counts of
lower nodes
 Top nodes thus stores sub-tree bytecode counts.
 Top nodes account for all executed bytecodes, including

JARs and utility methods.

 Caveat:
 Some feature may not be completely implemented.
 Some feature may not be executed due to missing

components.

COW London Feb. 23 14/25

Miniaturization Problem

 We would like to:
 Minimize size and CPU consumption.
 Maximize customer satisfaction.

 Constraints may be imposed on the search space
 Max available memory, max CPU power, customers

that must be satisfied.

 Generate a Pareto surface:
 Project Pareto surface onto a Pareto front.

 Final decision to the manager.

COW London Feb. 23 15/25

Miniaturization Problem (cont’d)

{ }

{ }

{ }

{ }

{ } intervalan is where...HC sconstraint

 ofset ameet must that RP properties are There

; ...IU unitstion implementa ofset a have We

features; OFF implements program edminiaturizA

features; desired icustomer list ...FEach

features; optional desiredcustomer ...OF

features; compulsory ComF ofset A

assigned; Vv0 value"" hascustomer Each

 customers; L ...

1

K

1

1i

1

max

1

jk

M

iNi

L

L

hchchc

iuiu

ff

FF

ccC

i

=
⊂

=

⊆′

=

=

≤≤

=

COW London Feb. 23 16/25

Miniaturization Problem (cont’d)

 Traceability creates a function Impl that given a feature
assigns implementation units.

 Each implementation unit has assigned properties values,
e.g., each method has assigned a size and a CPU
consumption.

 The Customer Satisfaction Ratio (CSR) is defined as:

L

V
v

F

FF

FCSR

iL

i
i

i

max
1

)(

×
′∩

=′
∑ =

COW London Feb. 23 17/25

Miniaturization Problem (cont’d)

 Maximize CSR(F’) means minimize –CSR(F’)

 For a given set of features F’, the implementation units
and the overall properties are:

 We assume that properties are additive: size (CPU
consumption) of two units is the sum of units sizes (CPU
consumptions).

()
()()ComFFImplProp'

ComFFImpl'

∪′=
∪′=

P

IU

COW London Feb. 23 18/25

Miniaturization Problem (cont’d)

()[]{ }

() ()[] iKi

F

hcppp

FCSR
OF

∈∪=∀

∪−
∈

i1i

2'

p:ComFF'ImplProp......|p

 :such that

ComFF'ImplProp),'(min

Notice that ()()ComFFImplProp ∪′

is actually an array of sizes and CPU consumptions.
Thus, a solution is a surface:

CSR = FUNC(size, CPU consumption)

COW London Feb. 23 19/25

Case Studies

 350 questionnaires, 73 completed surveys
 Pooka V2.0 e-mail client:

 208 classes.
 20,868 methods.
 245 KLOCs.
 599 pre-requirements.
 30 traced features.
 Code size 5.39 MB.

 SIP V1.0 audio/video internet phone:
 1,771 classes.
 31,302 methods.
 486 KLOCs.
 639 pre-requirements.
 36 traced features.
 Code size 27.3 MB.

COW London Feb. 23 20/25

NSGA-II Parameters

 We used JMETAL:
 Mutation probability 4%.
 Crossover 90%.
 Evaluation number 25,000.

 High iteration number to ensure that we did not
miss good solutions.

COW London Feb. 23 21/25

Pooka Projection CSR vs. Size

A: CSR = 0.21
Features: 15/30

B: CSR = 0.5
Features: 19/30

C: CSR = 0.56
Features: 23/30

COW London Feb. 23 22/25

SIP Projection CSR vs. Size

A: CSR = 0.20
Features: 10/36

B: CSR = 0.49
Features: 23/36

C: CSR = 0.56
Features: 31/36

COW London Feb. 23 23/25

Pooka Surface

COW London Feb. 23 24/25

Lessons Learned

 The miniaturization process is feasible but there
are challenges:
 Traceability recovery and accuracy of traced links.
 Collecting dynamic information is difficult:

 Missing or not 100% implemented features.
 CPU consumption difficult to run:

 We are still completing SIP.

 Some system (SIP) may exhibit tangled
dependencies and there may be no sweet spot.

COW London Feb. 23 25/25

Conclusion

 The porting problem was modeled as a multi-
objective minimization problem.

 Equations can accommodate a wide range of
properties.

 The process can be automated thus saving
considerable manual effort in selecting features
to be ported:
 Yet not in validating traceability links if links do not exist.

COW London Feb. 23 26/25

Questions

	Slide 1
	Motivation
	Resources vs. Feature vs. Customers
	Our Goal
	Different Customers – Different Features
	Customer Relative Weight
	Overall
	 PREREQIR in a Nutshell
	Static Traceability Map
	Features to Size
	Features to CPU Consumption
	Requirements to Features
	Dynamic Information
	Miniaturization Problem
	Miniaturization Problem (cont’d)
	Slide 16
	Slide 17
	Slide 18
	Case Studies
	NSGA-II Parameters
	Pooka Projection CSR vs. Size
	SIP Projection CSR vs. Size
	Pooka Surface
	Lessons Learned
	Conclusion
	Questions

