
COW London Feb. 23 1/25

Giuliano (Giulio) Antoniol Giuliano (Giulio) Antoniol

With the collaboration of Nasir Ali, Wei Wu, With the collaboration of Nasir Ali, Wei Wu, Yann-Gaël Yann-Gaël
Guéhéneuc, Jane Huffman Hayes, Max Di PentaGuéhéneuc, Jane Huffman Hayes, Max Di Penta

OdMoMS: Multi-Objective Miniaturization of OdMoMS: Multi-Objective Miniaturization of

SoftwareSoftware

http://www.polymtl.ca/index.html

COW London Feb. 23 2/25

Motivation

COW London Feb. 23 3/25

Resources vs. Feature vs. Customers

COW London Feb. 23 4/25

Our Goal

COW London Feb. 23 5/25

Different Customers – Different
Features

COW London Feb. 23 6/25

Customer Relative Weight

COW London Feb. 23 7/25

OverallOverall

 What do customer want?What do customer want?
 What do we already have ?What do we already have ?
 PREREQUIR + ReORe.PREREQUIR + ReORe.

 How can we make customers happy?How can we make customers happy?
 Static vs. dynamic informationStatic vs. dynamic information
 Size vs. features vs. happy customers vs. CPU consumptionSize vs. features vs. happy customers vs. CPU consumption

 Miniaturization problem.Miniaturization problem.

 Case Study.Case Study.

 Conclusion.Conclusion.

COW London Feb. 23 8/25

 PREREQIR in a NutshellPREREQIR in a Nutshell

 We need pre-requirement documents:We need pre-requirement documents:
 What the competitors’ systems do?
 What our customers want?

 We obtain and vet a list of requirements from We obtain and vet a list of requirements from
diverse stakeholders.diverse stakeholders.

 We structure requirements by mapping them into We structure requirements by mapping them into
a representation suitable for grouping via pattern-a representation suitable for grouping via pattern-
recognition and similarity-based clustering.recognition and similarity-based clustering.

COW London Feb. 23 9/25

Static Traceability Map

Rl

mim

Ci

R2

Cp

Cr

mp1

mi1
fn

mr1

mri

The system may depend on external
components e.g., an LDAP server

COW London Feb. 23 10/25

Features to Size

 Traceability relations are tagged with:
 Size information.
 IDs of customers requiring the given feature.

 Features are divided into:
 Compulsory.
 Cherry on the pie.

 Selected features must lead to a compilable
system:
 Extra code may be needed just to make sure that the

system compiles and runs.

COW London Feb. 23 11/25

Features to CPU Consumption

 Assumption: CPU cycles/consumption is related to energy
consumption:
 The higher the CPU consumption, the lower the battery life.

 Binder’s JP2 profiling tool: comprehensive calling-context
profiles:
 Exact number of executed bytecodes for each calling context.

 Caveat: modern hardware architecture prevent exact
estimation based on bytecode counting

 Bytecode counting is a good approximation of run time
algorithmic complexity.
 The lower the number of executed bytecodes, the lower the CPU

time, the lower the battery consumption.

COW London Feb. 23 12/25

Requirements to Features

Scenario 1
(feature a)

Scenario N
(feature z)

Scenario 2
(feature b)

…

Run System

Trace 1

Trace 2

Trace N

…

COW London Feb. 23 13/25

Dynamic Information

 Call tree:
 Integrate call tree information for each executed feature

with static traceability relations to count executed
bytecodes.

 Evaluate CPU consumption at method level:
accumulate into call tree top nodes the counts of
lower nodes
 Top nodes thus stores sub-tree bytecode counts.
 Top nodes account for all executed bytecodes, including

JARs and utility methods.

 Caveat:
 Some feature may not be completely implemented.
 Some feature may not be executed due to missing

components.

COW London Feb. 23 14/25

Miniaturization Problem

 We would like to:
 Minimize size and CPU consumption.
 Maximize customer satisfaction.

 Constraints may be imposed on the search space
 Max available memory, max CPU power, customers

that must be satisfied.

 Generate a Pareto surface:
 Project Pareto surface onto a Pareto front.

 Final decision to the manager.

COW London Feb. 23 15/25

Miniaturization Problem (cont’d)

{ }

{ }

{ }

{ }

{ } intervalan is where...HC sconstraint

 ofset ameet must that RP properties are There

; ...IU unitstion implementa ofset a have We

features; OFF implements program edminiaturizA

features; desired icustomer list ...FEach

features; optional desiredcustomer ...OF

features; compulsory ComF ofset A

assigned; Vv0 value"" hascustomer Each

 customers; L ...

1

K

1

1i

1

max

1

jk

M

iNi

L

L

hchchc

iuiu

ff

FF

ccC

i

=
⊂

=

⊆′

=

=

≤≤

=

COW London Feb. 23 16/25

Miniaturization Problem (cont’d)

 Traceability creates a function Impl that given a feature
assigns implementation units.

 Each implementation unit has assigned properties values,
e.g., each method has assigned a size and a CPU
consumption.

 The Customer Satisfaction Ratio (CSR) is defined as:

L

V
v

F

FF

FCSR

iL

i
i

i

max
1

)(

×
′∩

=′
∑ =

COW London Feb. 23 17/25

Miniaturization Problem (cont’d)

 Maximize CSR(F’) means minimize –CSR(F’)

 For a given set of features F’, the implementation units
and the overall properties are:

 We assume that properties are additive: size (CPU
consumption) of two units is the sum of units sizes (CPU
consumptions).

()
()()ComFFImplProp'

ComFFImpl'

∪′=
∪′=

P

IU

COW London Feb. 23 18/25

Miniaturization Problem (cont’d)

()[]{ }

() ()[] iKi

F

hcppp

FCSR
OF

∈∪=∀

∪−
∈

i1i

2'

p:ComFF'ImplProp......|p

 :such that

ComFF'ImplProp),'(min

Notice that ()()ComFFImplProp ∪′

is actually an array of sizes and CPU consumptions.
Thus, a solution is a surface:

CSR = FUNC(size, CPU consumption)

COW London Feb. 23 19/25

Case Studies

 350 questionnaires, 73 completed surveys
 Pooka V2.0 e-mail client:

 208 classes.
 20,868 methods.
 245 KLOCs.
 599 pre-requirements.
 30 traced features.
 Code size 5.39 MB.

 SIP V1.0 audio/video internet phone:
 1,771 classes.
 31,302 methods.
 486 KLOCs.
 639 pre-requirements.
 36 traced features.
 Code size 27.3 MB.

COW London Feb. 23 20/25

NSGA-II Parameters

 We used JMETAL:
 Mutation probability 4%.
 Crossover 90%.
 Evaluation number 25,000.

 High iteration number to ensure that we did not
miss good solutions.

COW London Feb. 23 21/25

Pooka Projection CSR vs. Size

A: CSR = 0.21
Features: 15/30

B: CSR = 0.5
Features: 19/30

C: CSR = 0.56
Features: 23/30

COW London Feb. 23 22/25

SIP Projection CSR vs. Size

A: CSR = 0.20
Features: 10/36

B: CSR = 0.49
Features: 23/36

C: CSR = 0.56
Features: 31/36

COW London Feb. 23 23/25

Pooka Surface

COW London Feb. 23 24/25

Lessons Learned

 The miniaturization process is feasible but there
are challenges:
 Traceability recovery and accuracy of traced links.
 Collecting dynamic information is difficult:

 Missing or not 100% implemented features.
 CPU consumption difficult to run:

 We are still completing SIP.

 Some system (SIP) may exhibit tangled
dependencies and there may be no sweet spot.

COW London Feb. 23 25/25

Conclusion

 The porting problem was modeled as a multi-
objective minimization problem.

 Equations can accommodate a wide range of
properties.

 The process can be automated thus saving
considerable manual effort in selecting features
to be ported:
 Yet not in validating traceability links if links do not exist.

COW London Feb. 23 26/25

Questions

	Slide 1
	Motivation
	Resources vs. Feature vs. Customers
	Our Goal
	Different Customers – Different Features
	Customer Relative Weight
	Overall
	 PREREQIR in a Nutshell
	Static Traceability Map
	Features to Size
	Features to CPU Consumption
	Requirements to Features
	Dynamic Information
	Miniaturization Problem
	Miniaturization Problem (cont’d)
	Slide 16
	Slide 17
	Slide 18
	Case Studies
	NSGA-II Parameters
	Pooka Projection CSR vs. Size
	SIP Projection CSR vs. Size
	Pooka Surface
	Lessons Learned
	Conclusion
	Questions

