
Optimization in Software Engineering Group (GOES.UECE)

State University of Ceará, Brazil

Jerffeson Teixeira de Souza, Ph.D

SBSE for Early Lifecyle Software Engineering
23rd February 2011

London, UK

Approach to the Software

Release Planning Problem
with Dependent Requirements

An Ant Colony Optimization

Jerffeson Teixeira de Souza, Ph.D.
State University of Ceará, Brazil
Professor

http://goes.comp.uece.br/
prof.jerff@gmail.com

Nice to meet you,

Our little time will be divided
as follows

Motivation
Problem Definition

Research Questions
Problem Encoding

The ACO Algorithm
Experimental Evaluation

Conclusion

Motivation

The Search Based Software Engineering (SBSE) field
has been benefited from a number of general
search methods.

Surprisingly, even with the large applicability and
the significant results obtained by the Ant Colony
Optimization (ACO) metaheuristic, very little has
been done regarding the employment of this
strategy to tackle software engineering problems
modeled as optimization problems.

óri

“swarm intelligence framework, inspired by
the behavior of ants during
food search in nature.”

Ant Colony Optimization

“ACO mimics the indirect
communication strategy

employed by real ants mediated
by pheromone trails, allowing
individual ants to adapt their

behavior to reflect the colony´s
search experience.”

The software release planning
problem addresses the selection
and assignment of requirements
to a sequence of releases, such
that the most important and

riskier requirements are
anticipated, and both cost and

precedence constraints are met.

“

”

“

”

The software release planning problem addresses
the selection and assignment of requirements to a
sequence of releases, such that the most important
and riskier requirements are anticipated, and both

cost and precedence constraints are met.

“

”

The software release planning problem addresses
the selection and assignment of requirements to a
sequence of releases, such that the most important
and riskier requirements are anticipated, and both

cost and precedence constraints are met.

“

”

The software release planning problem addresses
the selection and assignment of requirements to a
sequence of releases, such that the most important
and riskier requirements are anticipated, and both

cost and precedence constraints are met.

How can the ACO framework be adapted to
solve the Software Release Planning problem

in the presence of dependent requirements?

ACO for the Software Release Planning problem

How can the ACO frameworkbe adapted to
solve the Software Release Planning problem

in the presence of dependent requirements?

ACO for the Software Release Planning problem

How does the proposed ACO adaptation compare
to other metaheuristics in solving the Software

Release Planning problem in the presence of
dependent requirements?

ACO versus Other Metaheuristics

?

How can the ACO algorithm be adapted to
solve the Software Release Planning

problem in the presence of dependent
requirements?

ACO for the Software Release Planning problem

THE ACO ALGORITHM

PROBLEM ENCONDING

The problem will be encoded as a directed graph,
, where , with

representing mandatory moves,
and representing optional ones.

i. each vertex in represents a requirement ;

ii. a directed mandatory edge , if ;

iii. a directed optional edge , if and .

PROBLEM ENCONDING

if requirement has no precedent

requirements and

, for all unvisited requirements where

MORE

OVERALL INITIALIZATION
COUNT ← 1

MAIN LOOP
REPEAT

MAIN LOOP INITIALIZATION
FOR ALL vertices ri V, visitedi ← False
FOR ALL vertices ri V, current_planningi ← 0

SINGLE RELEASE PLANNING LOOP
// FINDS A NEW RELEASE PLANNING (current_planning)

MAIN LOOP FINALIZATION
IF current_planning.eval() > best_planning.eval() THEN

best_planning ← current_planning

COUNT ++
UNTIL COUNT > MAX_COUNT

RETURN best_planning

THE PROPOSED ACO ALGORITHM FOR THE

SOFTWARE RELEASE PLANNING PROBLEM

OVERALL INITIALIZATION
COUNT ← 1

MAIN LOOP
REPEAT

MAIN LOOP INITIALIZATION
FOR ALL vertices ri V, visitedi ← False
FOR ALL vertices ri V, current_planningi ← 0

SINGLE RELEASE PLANNING LOOP
// FINDS A NEW RELEASE PLANNING (current_planning)

MAIN LOOP FINALIZATION
IF current_planning.eval() > best_planning.eval() THEN

best_planning ← current_planning

COUNT ++
UNTIL COUNT > MAX_COUNT

RETURN best_planning

OVERALL INITIALIZATION
COUNT ← 1

MAIN LOOP
REPEAT

MAIN LOOP INITIALIZATION
FOR ALL vertices ri V, visitedi ← False
FOR ALL vertices ri V, current_planningi ← 0

SINGLE RELEASE PLANNING LOOP
// FINDS A NEW RELEASE PLANNING (current_planning)

MAIN LOOP FINALIZATION
IF current_planning.eval() > best_planning.eval() THEN

best_planning ← current_planning

COUNT ++
UNTIL COUNT > MAX_COUNT

RETURN best_planning

OVERALL INITIALIZATION
COUNT ← 1

MAIN LOOP
REPEAT

MAIN LOOP INITIALIZATION
FOR ALL vertices ri V, visitedi ← False
FOR ALL vertices ri V, current_planningi ← 0

SINGLE RELEASE PLANNING LOOP
// FINDS A NEW RELEASE PLANNING (current_planning)

MAIN LOOP FINALIZATION
IF current_planning.eval() > best_planning.eval() THEN

best_planning ← current_planning

COUNT ++
UNTIL COUNT > MAX_COUNT

RETURN best_planning

OVERALL INITIALIZATION
COUNT ← 1

MAIN LOOP
REPEAT

MAIN LOOP INITIALIZATION
FOR ALL vertices ri V, visitedi ← False
FOR ALL vertices ri V, current_planningi ← 0

SINGLE RELEASE PLANNING LOOP
// FINDS A NEW RELEASE PLANNING (current_planning)

MAIN LOOP FINALIZATION
IF current_planning.eval() > best_planning.eval() THEN

best_planning ← current_planning

COUNT ++
UNTIL COUNT > MAX_COUNT

RETURN best_planning

OVERALL INITIALIZATION
COUNT ← 1

MAIN LOOP
REPEAT

MAIN LOOP INITIALIZATION
FOR ALL vertices ri V, visitedi ← False
FOR ALL vertices ri V, current_planningi ← 0

SINGLE RELEASE PLANNING LOOP
// FINDS A NEW RELEASE PLANNING (current_planning)

MAIN LOOP FINALIZATION
IF current_planning.eval() > best_planning.eval() THEN

best_planning ← current_planning

COUNT ++
UNTIL COUNT > MAX_COUNT

RETURN best_planning

OVERALL INITIALIZATION
COUNT ← 1

MAIN LOOP
REPEAT

MAIN LOOP INITIALIZATION
FOR ALL vertices ri V, visitedi ← False
FOR ALL vertices ri V, current_planningi ← 0

SINGLE RELEASE PLANNING LOOP
// FINDS A NEW RELEASE PLANNING (current_planning)

MAIN LOOP FINALIZATION
IF current_planning.eval() > best_planning.eval() THEN

best_planning ← current_planning

COUNT ++
UNTIL COUNT > MAX_COUNT

RETURN best_planning

OVERALL INITIALIZATION
COUNT ← 1

MAIN LOOP
REPEAT

MAIN LOOP INITIALIZATION
FOR ALL vertices ri V, visitedi ← False
FOR ALL vertices ri V, current_planningi ← 0

SINGLE RELEASE PLANNING LOOP
// FINDS A NEW RELEASE PLANNING (current_planning)

MAIN LOOP FINALIZATION
IF current_planning.eval() > best_planning.eval() THEN

best_planning ← current_planning

COUNT ++
UNTIL COUNT > MAX_COUNT

RETURN best_planning

SINGLE RELEASE PLANNING LOOP
FOR EACH Release, k

Randomly place ant k in a vertex ri V, where
visitedi ← False and overall_costi ≤ budgetReleasek

ADDS (ri , k)
WHILE opt_visk(i) 0 DO

Move ant k to a vertex rj opt_visk(i) with
probability pij

k

ADDS (rj , k)
i ← j

SINGLE RELEASE PLANNING LOOP
FOR EACH Release, k

Randomly place ant k in a vertex ri V, where
visitedi ← False and overall_costi ≤ budgetReleasek

ADDS (ri , k)
WHILE opt_visk(i) 0 DO

Move ant k to a vertex rj opt_visk(i) with
probability pij

k

ADDS (rj , k)
i ← j

SINGLE RELEASE PLANNING LOOP
FOR EACH Release, k

Randomly place ant k in a vertex ri V, where
visitedi ← False and overall_costi ≤ budgetReleasek

ADDS (ri , k)
WHILE opt_visk(i) 0 DO

Move ant k to a vertex rj opt_visk(i) with
probability pij

k

ADDS (rj , k)
i ← j

// Besides ri, adds to release k all of its dependent requirements, and,
repeatedly, their dependent requirements

ADDS (ri , k)
ENQUEUE (Q, ri)
WHILE Q DO

rd ← DEQUEUE (Q)
FOR EACH rs ← opt_visk(i) DO

ENQUEUE (Q, rs)
visitedd ← True
current_planningd← k

// Besides ri, adds to release k all of its dependent requirements, and,
repeatedly, their dependent requirements

ADDS (ri , k)
ENQUEUE (Q, ri)
WHILE Q DO

rd ← DEQUEUE (Q)
FOR EACH rs ← opt_visk(i) DO

ENQUEUE (Q, rs)
visitedd ← True
current_planningd← k

// Besides ri, adds to release k all of its dependent requirements, and,
repeatedly, their dependent requirements

ADDS (ri , k)
ENQUEUE (Q, ri)
WHILE Q DO

rd ← DEQUEUE (Q)
FOR EACH rs ← opt_visk(i) DO

ENQUEUE (Q, rs)
visitedd ← True
current_planningd← k

// Besides ri, adds to release k all of its dependent requirements, and,
repeatedly, their dependent requirements

ADDS (ri , k)
ENQUEUE (Q, ri)
WHILE Q DO

rd ← DEQUEUE (Q)
FOR EACH rs ← opt_visk(i) DO

ENQUEUE (Q, rs)
visitedd ← True
current_planningd← k

// Besides ri, adds to release k all of its dependent requirements, and,
repeatedly, their dependent requirements

ADDS (ri , k)
ENQUEUE (Q, ri)
WHILE Q DO

rd ← DEQUEUE (Q)
FOR EACH rs ← opt_visk(i) DO

ENQUEUE (Q, rs)
visitedd ← True
current_planningd← k

// Besides ri, adds to release k all of its dependent requirements, and,
repeatedly, their dependent requirements

ADDS (ri , k)
ENQUEUE (Q, ri)
WHILE Q DO

rd ← DEQUEUE (Q)
FOR EACH rs ← opt_visk(i) DO

ENQUEUE (Q, rs)
visitedd ← True
current_planningd← k

// Besides ri, adds to release k all of its dependent requirements, and,
repeatedly, their dependent requirements

ADDS (ri , k)
ENQUEUE (Q, ri)
WHILE Q DO

rd ← DEQUEUE (Q)
FOR EACH rs ← opt_visk(i) DO

ENQUEUE (Q, rs)
visitedd ← True
current_planningd← k

// Besides ri, adds to release k all of its dependent requirements, and,
repeatedly, their dependent requirements

ADDS (ri , k)
ENQUEUE (Q, ri)
WHILE Q DO

rd ← DEQUEUE (Q)
FOR EACH rs ← opt_visk(i) DO

ENQUEUE (Q, rs)
visitedd ← True
current_planningd← k

SINGLE RELEASE PLANNING LOOP
FOR EACH Release, k

Randomly place ant k in a vertex ri V, where
visitedi ← False and overall_costi ≤ budgetReleasek

ADDS (ri , k)
WHILE opt_visk(i) 0 DO

Move ant k to a vertex rj opt_visk(i) with
probability pij

k

ADDS (rj , k)
i ← j

SINGLE RELEASE PLANNING LOOP
FOR EACH Release, k

Randomly place ant k in a vertex ri V, where
visitedi ← False and overall_costi ≤ budgetReleasek

ADDS (ri , k)
WHILE opt_visk(i) 0 DO

Move ant k to a vertex rj opt_visk(i) with
probability pij

k

ADDS (rj , k)
i ← j

SINGLE RELEASE PLANNING LOOP
FOR EACH Release, k

Randomly place ant k in a vertex ri V, where
visitedi ← False and overall_costi ≤ budgetReleasek

ADDS (ri , k)
WHILE opt_visk(i) 0 DO

Move ant k to a vertex rj opt_visk(i) with
probability pij

k

ADDS (rj , k)
i ← j

SINGLE RELEASE PLANNING LOOP
FOR EACH Release, k

Randomly place ant k in a vertex ri V, where
visitedi ← False and overall_costi ≤ budgetReleasek

ADDS (ri , k)
WHILE opt_visk(i) 0 DO

Move ant k to a vertex rj opt_visk(i) with
probability pij

k

ADDS (rj , k)
i ← j

SINGLE RELEASE PLANNING LOOP
FOR EACH Release, k

Randomly place ant k in a vertex ri V, where
visitedi ← False and overall_costi ≤ budgetReleasek

ADDS (ri , k)
WHILE opt_visk(i) 0 DO

Move ant k to a vertex rj opt_visk(i) with
probability pij

k

ADDS (rj , k)
i ← j

EXPERIMENTAL EVALUATION
RESULTS AND ANALYSES

How does the proposed ACO adaptation compare to
other metaheuristics in solving the Software Release

Planning problem in the presence of dependent
requirements?

ACO versus Other Metaheuristics

?

The Experimental Data

Table below presents the number of
releases, requirements and clients of the three
synthetically generated instances used in the
experiments.

Instance
Name

Instance Features
Releases # Requirements # Clients

INST.A 5 30 3
INST.B 10 50 5
INST.C 20 80 8

The Algorithms

Genetic Algorithm (GA)
widely applied evolutionary algorithm, inspired
by Darwin´s theory of natural selection, which
simulates biological processes such as
Inheritance, mutation, crossover, and selection

Simulated Annealing (SA)
it is a procedure for solving arbitrary optimization
problems based on an analogy with the annealing
process in solids.

Comparison Metrics

Quality

it relates to the quality of each
generated solution, measured by
the value of the objective function.

Execution Time

it measures the required execution
time of each strategy.

Instance GA SA ACO

INST.A
8,508.50 ±

337.08

8,143.95 ±

679.84

10,753.75 ±

174.15

INST.B
29,815.60 ±

822.03

27,683.75 ±

1,360.96

37,031.40 ±

318.88

INST.C
211,196.15 ±

3,562.85

198,431.30 ±

8,549.32

255,149.05 ±

2,547.04

Quality of Results for Instaces A, B anc C
averages and standard deviations, over 100 executions

RESULTS

Execution time (in milliseconds) for Instaces A, B anc C
averages and standard deviations, over 100 executions

RESULTS

Instance GA SA ACO

INST.A
693.75 ±

26.69

150.75 ±

7.79

128.25 ±

17.85

INST.B
2,597.10 ±

69.22

329.60 ±

33.64

284.25 ±

21.99

INST.C
125,721.85 ±

13.037.98

2,879.80 ±

1.038.67

1,294.05 ±

35.39

Boxplots showing maximum (), minimum () and 25% - 75%
quartile ranges of quality for all instances, for GA , SA and ACO.

6000

7000

8000

9000

10000

11000

12000

Genetic

Algorithm

Simulated

Annealing

Ant Colony

Optimization

I
N
S
T
A

Boxplots showing maximum (), minimum () and 25% - 75%
quartile ranges of quality for all instances, for GA , SA and ACO.

23000

25000

27000

29000

31000

33000

35000

37000

39000

Genetic

Algorithm

Simulated

Annealing

Ant Colony

Optimization

I
N
S
T
B

Boxplots showing maximum (), minimum () and 25% - 75%
quartile ranges of quality for all instances, for GA , SA and ACO.

160000

180000

200000

220000

240000

260000

280000

Genetic

Algorithm

Simulated

Annealing

Ant Colony

Optimization

I
N
S
T
C

Threats to Validity

Small number, size and diversity
of instances

Artificial instances

Parameterization of
algorithms

CONCLUSIONS

Very little has been done regarding the employment of the Ant
Colony Optimization (ACO) framework to tackle software
engineering problems modeled as optimization problems.

This talk described a novel ACO-based approach for the
Software Release Planning problem with the presence of

dependent requirement.

All experimental results pointed out to the ability of the
proposed ACO approach to generate precise solutions with

very little computational effort.

along with
XXV Brazilian Symposium on Software Engineering (SBES 2011)

XV Brazilian Symposium on Programming Languages (SBLP 2011)
XIV Brazilian Symposium on Formal Methods (SBMF 2011)

V Brazilian Symposium on Software Components,
Architectures and Reuse (SBCARS 2011)

II Brazilian Workshop on
Optimization in Software Engineering

SÃO PAULO - SP, BRAZIL
SEPTEMBER 26-30, 2011
http://www.each.usp.br/cbsoft2011

INVITATION

http://www.each.usp.br/cbsoft2011

That is it!
Thanks for your time and attention.

