
Slicing and
Functional Programming

Simon Thompson

University of Kent

Haskell and Erlang

• Pure language …

• … but has monads

• Strongly typed

• Lazy evaluation

• Sequential core

• Impure language …

• … but single assignment

• Weakly typed

• Strict evaluation

• Concurrent

Concurrency in Erlang
-module(echo).
-export([go/0, loop/0]).

go() ->
Pid = spawn(echo, loop, []),
Pid ! {self(), hello},
receive

{Pid, Msg} ->
io:format("~w~n",[Msg])

end,
Pid ! stop.

loop() ->
receive

{From, Msg} ->
From ! {self(), Msg},
loop();

stop ->
true

end.

Laziness in Haskell

• Arguments are only
evaluated when needed.

• Arguments are only
evaluated to the extent
that is needed for
evaluation to proceed.

if True t f = t
if False t f = f

if (2>3) ⊥ 4 ↝ 4

sft (a:b:xs) = a+b
ones = 1:ones

sft ones ↝ 2

Slicing
parseMessage :: MessageList -> (Message, MessageList)
parseMessage [] = ([], [])
parseMessage xs = (takeWhile (/= ’&’) (tail ys),

 dropWhile (/= ’&’) (tail ys))
 where

ys = dropWhile (/= ’&’) xs

parseMsgL :: MessageList -> Message
parseMsgL [] = []
parseMsgL xs = takeWhile (/= ’&’)

(tail (dropWhile (/= ’&’) xs))

Clone detection

• Search for
common
generalisation.

• What about
insertion,
deletion or
permutation of
statements?

• Can slicing
help?

Ideas

• Slicing for debugging functional programs.

• Slicing components of complex structures.

• … and others … ?

