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Control Dependence - a Brief History

1977 D. E. Denning, P. J. Denning,Certification of programs for secure
information flow Communications of the ACM

1979 Weiser: PhD Thesis First use of Control Dependence in Slicing -
although called something else.

1987 J. Ferrante, K. J. Ottenstein, J. D. Warren, The program
dependence graph and its use in optimization, TOPLAS. First to
use the term Control Dependence

1990 A. Podgurski, L. Clarke, A formal model of program dependences
and its implications for software testing, debugging, and
maintenance, TSE.

1996 G. Bilardi, K. Pingali, A framework for generalized control
dependence, in: PLDI.

2007 V. P. Ranganath et al., A new foundation for control dependence
and slicing for modern program structures, TOPLAS.

2008 T. Amtoft, Slicing for modern program structures: a theory for
eliminating irrelevant loops, IPL.
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Traditional (Ferrante et al.) Control Dependence

Which nodes does p control?

{q, v4, v5},
but not v3.

q controls v3.

So p transitively controls v3.

Node p controls node v if there is a path from p to end which does not
pass through v but there is a successor of p from which all paths to end
go through v .
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Slicing - Data and Control Dependence

Slice at v5.

1 First add start and end.

2 v5 is data dependent on v2.

3 v5 is control dependent on p.

4 p is data dependent on v1.

5 The set of red nodes is closed under
control and data dependence

6 Remove the non-red nodes.

7 Finally, ‘rewire’ the graph.
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Rewiring

To rewire, add an edge between two red nodes if there is a path with no
intervening red nodes. We label it with the same label as the initial edge.
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The Induced Graph

To rewire, add an edge between two red nodes if there is a path with no
intervening red nodes. We label it with the same label as the initial edge.
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Slicing

So slicing involves computing a set closed under control and data and then
building the induced graph.
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Slicing

Notice: non-termination may not be preserved.
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Slicing

Notice: non-termination may not be preserved. This is because traditional
control dependence is ‘non-termination insensitve’.
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Slicing

Notice: non-termination may not be preserved. This is because traditional
control dependence is ‘non-termination insensitve’. We prefer to call it
weak.

30 / 163



Slicing

What if you want slices to preserve non-termination?
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Slicing

What if you want slices to preserve non-termination? We need q to be
included too.
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Slicing

but q does not control anything using the traditional definitions of
Ferrante and Ottenstein (1987) and previously Weiser (1981).
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Slicing

Podgurski and Clarke (1990) introduced a form of control dependence
which solved this problem.
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Slicing

Podgurski and Clarke (1990) introduced a form of control dependence
which solved this problem. q controls end using their definition.
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Slicing

the slice produced using Podgurski and Clarke’s control dependence
preserves non-termination.
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Slicing

Theirs is a ‘non-termination sensitive’ or as we prefer, strong form of
control dependence.
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Two Forms of Slice

The weak slice and the strong slice
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Slicing

but Podgurski and Clarke’s definition only works if end is reachable from
every node.
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Slicing

but Podgurski and Clarke’s definition only works if end is reachable from
every node. This is not the case in reactive systems.
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Slicing Reactive Systems
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Slicing Reactive Systems

In reactive systems we have intentionally non-terminating programs.
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Slicing Reactive Systems

In reactive systems we have intentionally non-terminating programs. Here
we have a ‘deliberate’ infinite loop.
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Slicing Reactive Systems

In reactive systems we have intentionally non-terminating programs. Here
we have a ‘deliberate’ infinite loop. This is a problem.
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Slicing Reactive Systems

The red set is closed under traditional control dependence and also under
Podgurski and Clarke’s control dependence.
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Slicing Reactive Systems

The red set is closed under traditional control dependence and also under
Podgurski and Clarke’s control dependence. But ...
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Slicing Reactive Systems

The induced graph isn’t even a legal CFG. v2 is a non-predicate of out
degree greater than one.
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Slicing Reactive Systems

Ranganath et al. (2007) noticed that we need new forms of control
dependence to solve this problem.
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Slicing Reactive Systems

They introduced
NTSCD−−−−−→ and

DOD−−−→ which produced strong slices for
reactive systems. (A generalisation of Podgurski and Clarke’s definition).
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Slicing Reactive Systems

Later Amtoft (2008) produced
WOD−−−→ which gives rise to weak slices of

reactive systems. (A generalisation of Ferrante et al.’s definition).
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Contributions of our Work

W-controls−−−−−−→ (Weiser 1979)
F-controls−−−−−−→ (Ferrante and Ottenstein 1987)
PC-weak−−−−−→ (Podgurski and Clarke 1990)
NTSCD−−−−−→ and

DOD−−−→ (Ranganath et al 2006)
WOD−−−→ (Amtoft 2007)

Can they be generalised in a nice high-level way? yes!

Are there underlying semantic properties captured by all these
different forms of control dependence? yes!
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Categorisation of the Different Forms of Control
Dependence

Weak (Non-termination sensitive):
W-controls−−−−−−→ (Weiser 1979)
F-controls−−−−−−→ (Ferrante and Ottenstein 1987)
WOD−−−→ (Amtoft 2007)

Strong (Non-termination sensitive):
PC-weak−−−−−→ (Podgurski and Clarke 1990)
NTSCD−−−−−→ and

DOD−−−→ (Ranganath et al 2006)
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Weak Commitment-Closedness

We do not give yet another definition of control dependence.

Instead we give a property of sets closed under non-termination
insensitive control dependence.

The sets are Weak commitment-closed

This definition works for all directed graphs and is hence more general.
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Definition: S-Weakly Committing Nodes

A node is S-weakly committing if on every path from it we reach the
same element of S first.
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Definition: S-Weakly Committing Nodes

A node is S-weakly committing if on every path from it we reach the
same element of S first. Trivially, all elements of S are S-weakly
committing. v1 is S-weakly committing, since we always reach v2 first. So
is v4.
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Definition: S-Weakly Committing Nodes

A node is S-weakly committing if on every path from it we reach the
same element of S first. Trivially, all elements of S are S-weakly
committing. v1 is S-weakly committing, since we always reach v2 first. So
is v4. Nodes p and q are not weakly committing.
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Definition: Weakly Commitment-closed Sets

A set S is weakly commitment-closed if all nodes not in S are S-weakly
committing.
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Definition: Weakly Commitment-closed Sets

A set S is weakly commitment-closed if all nodes not in S are S-weakly
committing. This S is not weakly commitment-closed.
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Definition: Weakly Commitment-closed Sets

A set S is weakly commitment-closed if all nodes not in S are S-weakly
committing. This S is not weakly commitment-closed. Now it is!
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Weakly Commitment-closed Sets in Reactive Systems

So let’s see how it works for reactive systems.
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Weakly Commitment-closed Sets in Reactive Systems

Which nodes are S-weakly committing?
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Weakly Commitment-closed Sets in Reactive Systems

Which nodes are S-weakly committing? v1, q and v4.
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Weakly Commitment-closed Sets in Reactive Systems

Which nodes are S-weakly committing? v1, q and v4. But not p. So S is
not weak commitment-closed.
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Weakly Commitment-closed Sets in Reactive Systems

Which nodes are S-weakly committing? v1, q and v4. But not p. So S is
not weak commitment-closed. So the induced graph is bad.
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Weakly Commitment-closed Sets in Reactive Systems

Now S is weakly commitment-closed!
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Weakly Commitment-closed Sets in Reactive Systems

Now S is weak commitment-closed! So the induced graph is good.
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Theorem 1: Soundness and Completeness of WCC

For each weak form of control dependence c in the literature, a set S is
closed under c if and only if S is weakly commitment-closed.
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Generality of WCC

The beauty of weak commitment-closedness is that there is no need to
consider special cases considered by previous authors. It works for them all.
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Generality of WCC

Using Weak Commitment-Closedness, things like end reachability are
irrelevant. It ‘works’ for all directed graphs.
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Algorithm for WCC

We have an algorithm O(n3)log(n) which given any node set V , computes
the minimal weakly commitment closed set containing V .
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Using WCC

Because of Theorem 1, this algorithm can be used in all cases instead of
the weak forms of control dependence in the literature.
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Traditional Slicing using Weakly Commitment-closed Sets

So in traditional slicing, given a slicing criterion V ′ we must find the
minimal weakly commitment closed set containing V ′.

We have an O(n3)log(n) algorithm for this. This is the same as for

Amtoft’s
WOD−−−→.

We believe it can be improved to O(n3).
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Another Example

This set is weakly commitment-closed.
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Another Example

This set is weakly commitment-closed. What is the induced graph?
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Another Example

This set is weakly commitment-closed. This is the induced graph.
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Another Example

Any comments regarding non-termination?
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WCC does not preserve non-termination

It certainly does not preserve non-termination.
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WCC does not preserve non-termination

It certainly does not preserve non-termination. But that’s not surprising
because this is weak commitment-closedness.
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We need Strong Commitment Closedness for that.

To preserve non-termination we need strong commitment closedness.
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S-avoiding Nodes

A node is S-avoiding if no paths from it reach S .
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S-avoiding Nodes

A node is S-avoiding if no paths from it reach S . q, v3, v4 are S-avoiding .
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S-Strongly Committing Nodes

A node is S-strongly committing if it is S-weakly committing and all
paths from it eventually reach S .
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S-Strongly Committing Nodes

A node is S-strongly committing if it is S-weakly committing and all
paths from it eventually reach S . i.e. all paths from it reach the same
element of S first.
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S-Strongly Committing Nodes

A node is S-strongly committing if it is S-weakly committing and all
paths from it eventually reach S . i.e. all paths from it reach the same
element of S first. v1 is S-strongly committing.
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Strong Commitment Closedness

S is strongly commitment-closed if all elements not in S are either
S-avoiding or S-strongly committing.

97 / 163



Strong Commitment Closedness

S is strongly commitment-closed if all elements not in S are either
S-avoiding or S-strongly committing. p is neither S-avoiding nor
S-strongly committing.

98 / 163



Strong Commitment Closedness

S is strongly commitment-closed if all elements not in S are either
S-avoiding or S-strongly committing. p is neither S-avoiding nor
S-strongly committing. So S is not strongly commitment-closed.
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Strong Commitment Closedness

S is strongly commitment-closed if all elements not in S are either
S-avoiding or S-strongly committing. p is neither S-avoiding nor
S-strongly committing. So S is not strongly commitment-closed. Now it
is!
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Graphs Induced from Strongly Commitment Closed Sets

So let’s look at this induced graph.
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So let’s look at this induced graph.
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Incomplete Predicates

So let’s look at this induced graph. p is an ‘incomplete’ predicate.
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Interpreting Incomplete Predicates

So let’s look at this induced graph. p is an ‘incomplete’ predicate. How do
we interpret this?
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Interpreting Incomplete Predicates

So let’s look at this induced graph. p is an ‘incomplete’ predicate. How do
we interpret this? If p evaluates to T then we get silent non-termination.
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The Advantage of Incomplete Predicates

Using incomplete predicates for silent non-termination means that we
don’t have to include ‘ghost’ control sinks that may introduce further
unnecessary dependences.
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Theorem 2: Soundness and Completeness of SCC

For each form c of the strong forms of control dependence in the literature,
S is closed under c if and only if S is strongly commitment-closed.
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Non-termination Sensitive Slicing using Strongly
Commitment-closed Sets

So in Non-termination Sensitive Slicing slicing, given a slicing
criterion V ′ we must find the minimal strongly commitment-closed
set containing V ′.

Again, we have an O(n3)log(n) algorithm for this.

Again, we believe it can be improved to O(n3).
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Semantics?

What is the semantic relationship between a graph and the graphs induced
by a weakly and strongly commitment-closed sets?
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Semantics Induced by Weakly Commitment-closed Sets

What is the semantic relationship between a graph and a graph induced by
a weakly commitment-closed set?
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Walks

Walks are like paths where we also record whether the T or F branches
were taken at the predicates.
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Examples of Walks

start, v1, v2

114 / 163



Examples of Walks

start, v1, v2, (p,T)
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Examples of Walks

start, v1, v2, (p,T), (q,F), v4, v3, (q,T), v3
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Examples of Walks

start, v1, v2, (p,F), v5, end
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Walks of the Induced Graph

G1 G2

Let’s compare walks of the original graph with the walks of a graph
induced by a weakly commitment closed set.
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Walks of the Induced Graph

G1

start, v1, v2

G2

start, v2
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Walks of the Induced Graph

G1

start, v1, v2, (p,T)

G2

start, v2, (p,T)
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Walks of the Induced Graph

G1

start, v1, v2, (p,T), (q,F), v4, v3, (q,T), v3

G2

start, v2, (p,T), v3, v3
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Walks of the Induced Graph

G1

start, v1, v2, (p,F), v5, end

G2

start, v2, (p,F), v5, end
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Walks of Graphs Induced from WCC Sets

G1 G2

What is the relationship between the walks of G1 and the walks of G2?
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Weak Projections

G1 G2

Every walk of G1 when restricted to G2 is a walk of G2.
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Weak Projections

G1 G2

Every walk of G1 when restricted to G2 is a walk of G2. We say G2 is a
weak projection of G1.
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Theorem 3: Semantics of WCC

G1 G2

The graph induced from V is a weak projection if and only if V is weakly
commitment-closed.
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Result

G1 G2

Theorems 1 and 3 imply that sets closed under all weak forms of control
dependence in the literature induce weak projections.
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Weak Projections

G1 G2

So weak projection captures semantically what all previous authors of
definitions of weak control dependence wanted to achieve!
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Weak Control Dependence

G1 G2

So authors of future definitions should also prove their definitions satisfy
this property!
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Strong Control Dependence

G1 G2

What about graphs induced from strongly commitment-closed sets?
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Maximal Walks

Maximal walks are those which are not a prefix of any other walk.
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Maximal Walks corresponding to termination

The only maximal walks that correspond to termination are those whose
final element is end.
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Maximal Walks corresponding to non-termination

All other finite maximal walks are considered non-terminating.
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Walks of Graphs Induced from SCC sets

start, v1, v2, (p,T), (q,T), v3, (q,F), v4, v3 . . .
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Walks of Graphs Induced from SCC sets

start, v1, v2, (p,T), (q,T), v3, (q,F), v4, v3 . . . start, v2, (p,T)
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Walks of Graphs Induced from SCC sets

What is the relationship between the two?
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Remember Weak Projections

G2 is a weak projection of G1 means every walk of G1 when restricted to
G2 is a walk of G2.

137 / 163



Strong Projections

G2 is a strong projection of G1 means every maximal walk of G1 when
restricted to G2 is a maximal walk of G2.
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Theorem 4: Semantics of SCC

The graph induced from V is a strong projection if and only if V is
strongly commitment-closed.
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Result

Theorems 2 and 4 imply that sets closed under all strong forms of control
dependence in the literature induce strong projections.
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Strong Projection

So, again, strong projection captures semantically what all previous
authors of definitions of strong control dependence wanted to achieve.
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Strong Projections are Non-Termination Preserving

It follows that strong projections are non-termination preserving.
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Strong Projections are Non-Termination Preserving

From this it follows that strong projections are non-termination preserving
(as required!).
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Strong Projections with end preserve both

Also notice, strong projections are weak projections.
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Strong Projections with end preserve both

Also notice, strong projections are weak projections. But not vice-versa.
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Strong Projections with end preserve both

If end is in the weak projection, then the weak projection preserves
termination.
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Strong Projections with end preserve both

So if end is in the strong projection, then the strong projection preserves
both termination and non-termination.
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Conclusion

W-controls−−−−−−→ (Weiser 1979)
F-controls−−−−−−→ (Ferrante and Ottenstein 1987)
PC-weak−−−−−→ (Podgurski and Clarke 1990)
NTSCD−−−−−→ and

DOD−−−→ (Ranganath et al 2006)
WOD−−−→ (Amtoft 2007)

Can they be generalised in a nice high-level way? yes!

Are there underlying semantic properties captured by all these
different forms of control dependence? yes!
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Conclusion

Weak (Non-termination sensitive):
W-controls−−−−−−→ (Weiser 1979)
F-controls−−−−−−→ (Ferrante and Ottenstein 1987)
WOD−−−→ (Amtoft 2007)

Strong (Non-termination sensitive):
PC-weak−−−−−→ (Podgurski and Clarke 1990)
NTSCD−−−−−→ and

DOD−−−→ (Ranganath et al 2006)
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Conclusion
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W-controls−−−−−−→ (Weiser 1979)
F-controls−−−−−−→ (Ferrante and Ottenstein 1987)
WOD−−−→ (Amtoft 2007)

Strong (Non-termination sensitive):
PC-weak−−−−−→ (Podgurski and Clarke 1990)
NTSCD−−−−−→ and

DOD−−−→ (Ranganath et al 2006)
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Conclusions

We have generalised non-termination insensitive and sensitive control
dependence by defining and giving algorithms for weak and strong
commitment-closedness.

Theorem 1: A set is closed under each of the weak forms of control
dependence in the literature if and only if it is weakly
commitment-closed.

Theorem 2: A set is closed under each of the strong forms of control
dependence in the literature if and only if it is strongly
commitment-closed.

We defined semantic relations: weak and strong projections
between graphs in terms of walks.

Theorem 3: The graph induced from V is a weak projection if and
only if V is weakly commitment-closed.

Theorem 4: The graph induced from V is a strong projection if and
only if V is strongly commitment-closed.
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The End

Thanks for listening?

Any questions?
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