On the separation of queries from modifiers

Ran Ettinger, IBM Research — Haifa
CREST Open Workshop, University College London
24 January 2011



Separate Query from Modifier (SQfM)

« A refactoring technique by Martin Fowler*
— “You have a method that returns a value but also changes the state of an object.”
— “Create two methods, one for the query and one for the modification.”
» Inspired by Bertrand Meyer's Command Query Separation (CQS)
« This talk:
— Qutline of a first algorithm to support the automation of this refactoring
— Based on program slicing, with reference to other refactoring techniques
— A prototype tool integrated into Eclipse

— Open source implementation in WALA (http://wala.sourceforge.net)
» Developed by Eli Kfir and Daniel Lemel (Technion, Israel Institute of Technology)
» Contributions by Alex Libov (Technion), Dima Rabkin and Vlad Shumlin (Haifa University)
« Based on a slicer for Java by Stephen J. Fink (IBM Research) and the WALA contributors

* See htip://www.refactoring.com/catalog/separateQueryFromModifier.html and
http://sourcemaking.com/refactoring/separate-query-from-modifier




Fowler's Example (Before SQfM)

String foundMiscreant (String[] people) ({
for (int i=0; i<people.length; i++) {
if (people[i] .equals("Don")) {
sendAlert () ;
return '"Don";

if (people[i] .equals("John")) {
sendAlert () ;
return "John";
}
}

retuirn =@

void checkSecurity (String[] people) {
String found = foundMiscreant (people) ;
someLaterCode (found) ;



Fowler's Example (After SQfM)

String foundPerson (String[] people) {
for (int i=0; i<people.length; i++) {
if (people[i] .equals("Don")) {
return "Don'";
}
if (people[i] .equals("John")) {
return "John";

} void sendAlert (String[] people) {
} for (int i=0; i<people.length; i++) {
return ""; if (people[i] .equals("Don")) {
} sendAlert () ;
return,

if (people[i] .equals("John")) {
sendAlert () ;
return,;

}

void checkSecurity (String[] people) {
sendAlert (people) ;
String found = foundPerson (people);
someLaterCode (found) ;



Fowler's Example (Beyond SQfM)

String foundPerson (String[] people) ({
for (inr 1=0° 1<people length; 1+4) |
if (people[i] .equals("Don")) {
return 'bon ;
}
if (people[i] .equals("John")) {
feturn "John'
}
}

return @

void sendAlert (String[] people) {
if (! foundPerson (people) .equals(""))
sendAlert () ;

void checkSecurity (String[] people) {
sendAlert (people);
String found = foundPerson (people);
someLaterCode (found) ;



Outline of a Separation Algorithm

1.

Optional: Add a temporary variable for
the returned value

Extract the slice of the returned value
into a new method (Q), adjusting the

original met
Optional: In

nod accordingly
ine Temp (on the result of Q)

Extract Met

nod (for M), after updating its

return statements
Inline Method (on the original method)



Step 1: Add a Temporary Variable

String foundMiscreant (String[] people) ({
String result;
for (int i=0; i<people.length; i++) {
if (people[i] .equals("Don")) {
sendAlert () ;
result = "Don";
return result:

if (people[i] .equals("John")) ({
sendAlert () ;
result = ' John' ;
return result;

}
}

resulr = ' ;
return result;

void checkSecurity (String[] people) {
String found = foundMiscreant (people) ;
somelLaterCode (found) ;



Step 2: Extract Q (Slice of result)

String foundPerson (String[] people) ({
String result;
for (int i=0; i<people.length; i++) {
if (people[i] .equals("Don")) {

result = "pon'
return result; String foundMiscreant (String[] people) {
} String result = foundPerson (people);
if (people[i].equals("John")) ({ for (int i=0; i<people.length; i++) {
result = "John"; if (people[i] .equals("Don")) {
return result; sendAlert () ;
} return result;
} }
resule = ' if (people[i] .equals("John")) {
return result; sendAlert () ;
} return result;

}
}

return result;

void checkSecurity (String[] people) {
String found = foundMiscreant (people) ;
someLaterCode (found) ;



Step 3: Inline Temp (result)

String foundPerson (String[] people) ({
for (nr 1=0: 1<peoplie length; 1t4) |
if (people[i] .equals("Don")) {
return "Don'";
}
if (people[i].equals("John")) { String foundMiscreant (String[] people) {

return "John"; for (int i=0; i<people.length; i++) {
} if (people[i].equals("Don")) {
} sendAlert () ;
rerurn | return foundPerson (people);

} }
if (people[i] .equals("John")) ({
sendAlert () ;
return foundPerson (people);

}
}

return foundPerson (people);

void checkSecurity (String[] people) {
String found = foundMiscreant (people) ;
someLaterCode (found) ;



Step 4: Extract Method (M)

String foundPerson (String[] people) ({
for (int i=0; i<people.length; i++) {
if (people[i] .equals("Don")) {

String sendAlert (String[] people) {
return "Don'";

) for (int i=0; i<people.length; i++) {

: _ if (people[i] .equals("Don")) {

if (people[i] .equals("John")) ({ sendAlert () ;

return "John";

! }
} - if (people[i] .equals("John")) ({
Feturn ‘ sendAlert () ;
return;

return,

String foundMiscreant (String[] people) {
sendAlert () ;
return foundPerson (people);

void checkSecurity (String[] people) {
String found = foundMiscreant (people);
someLaterCode (found) ;

10



Step 5: Inline Method

String foundPerson (String[] people) ({
for (int i=0; i<people.length; i++) ({
if (people[i] .equals("Don")) {
return "Don'";
}
if (people[i] .equals("John")) ({
return "John";

} void sendAlert (String[] people) {
} for (int i=0; i<people.length; i++) {
return if (people[i] .equals("Don")) {
} sendAlert () ;
return;

if (people[i] .equals("John")) ({
sendAlert () ;
return,

}

void checkSecurity (String[] people) {
sendAlert (people) ;
String found = foundPerson (people);
someLaterCode (found) ;

11



Conditions for Behavior Preservation

* The two new method names must be legal and
cause no conflict

 The code of Q must be free of side effects

— Otherwise, can some measures be taken to prevent
the effects?

— Further SQfM of called methods might be needed,
requiring further user interaction

» Legal selection of a method

— It should be non-void and with side effects (or M
would be empty)

— If it participates in overriding special treatment is
needed

« Example: A Java Iterator’s next () method

12



Some Challenges

« How not to fail when the Query has side effects

— Idea: assuming Q will follow M, try to reuse some of
M’s results in Q instead of re-computing them; so it is
the slice of the side effects that will be extracted,
iInstead of that of the returned value

* How to minimize code duplication, correctly

— which extraction technique (of Q or of M) should be
preferred?

« How not to fail in the final (Inline Method) step

— When the call is inside a loop’s condition the
Modifier’s invocation location is non-trivial

— The Eclipse “Inline” treatment is not always correct

13



