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INTRODUCTION

Context
I OO paradigm is the de-facto choice for software

development
I Subject to several factors that hamper dependence analysis

Aim of the talk
I To show problems that arise with static analysis of OO

code
I From the perspective of my thesis work

I Develop a source code reading tool
I Purpose: To navigate the source code related to a given

system-level feature
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TO BEAR IN MIND...

I Thesis work carried out 2002-2005
I Some opinions could be out of date

I Have tried to link relevant slides to discussion on
functional slicing

I Relevant slides marked
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THE CHALLENGE OF OO FEATURE IDENTIFICATION
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THESIS IDEA

Use static code analysis, with limited input from
developer

I Combine slicing, call graph analysis and developer input
I Should identify relevant methods and method calls
I Integrate into a code-reading interface

Outcome
I Possible to produce an accurate result

I ... but only with large amount of help from the developer

I Problem massively exacerbated as scale increased
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OO STATIC ANALYSIS CHALLENGES
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PROBLEMS POSED BY OO MECHANISMS

Polymorphism and Dynamic Binding

I Type of an object is defined by the interface it provides
I Implementations for methods declared in hierarchy
I Methods bound to their implementations at runtime
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PROBLEMS POSED BY OO MECHANISMS

Data dependence computation relies on inter-procedural
analysis

I A def or a use of a variable can
depend on the called method

I Does call to an object
method mutate or access it?

I If passed as an argument, is
it accessed or mutated?

I Demands inter-procedural
analysis

I Erroneous pointers can
result in def-use errors

I Static analysis forced to
include library methods
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PROBLEMS POSED BY OO MECHANISMS

Object associations

I Objects do not occur in isolated hierarchies
I Objects can contain other objects belonging to different

hierarchies

I The possible types of the associated objects (and their
objects) have to be accounted for

I Dependence analysis needs to account for every possible
combination of types

I Parameter trees
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PROBLEMS POSED BY OO MECHANISMS

Figure

Circle Rectangle

Square

FigureConnector

Figure: from
Figure: to

BezierConnector

Point[]: points

calculateDistance

calculateDistance

printDistance(FigureConnector fc){
    double distance = fc.calculateDistance()
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DELOCALISED DESIGN

Dependencies are heavily delocalised

I Classes of objects represent units that are conceptually
aligned with problem domain

I Dependencies tend to span the system
I Some evidence that OO dependencies obey principles of

small-world networks
I ”Software systems as complex networks...”, C. Myers, 2003

I ”Distribute system intelligence horizontally as uniformly as possible, that is,
the top level classes in a design should share the work uniformly.” [Riel, OO
design heuristics, Addison Wesley 2002]



Introduction Work on OO Feature Identification Problems of OO Software Analysis Conclusions

DELOCALISED DESIGN

Dependencies are heavily delocalised

I Classes of objects represent units that are conceptually
aligned with problem domain

I Dependencies tend to span the system
I Some evidence that OO dependencies obey principles of

small-world networks
I ”Software systems as complex networks...”, C. Myers, 2003

I ”Distribute system intelligence horizontally as uniformly as possible, that is,
the top level classes in a design should share the work uniformly.” [Riel, OO
design heuristics, Addison Wesley 2002]



Introduction Work on OO Feature Identification Problems of OO Software Analysis Conclusions

DELOCALISED DESIGN

Dependencies are heavily delocalised

I Classes of objects represent units that are conceptually
aligned with problem domain

I Dependencies tend to span the system
I Some evidence that OO dependencies obey principles of

small-world networks
I ”Software systems as complex networks...”, C. Myers, 2003

I ”Distribute system intelligence horizontally as uniformly as possible, that is,
the top level classes in a design should share the work uniformly.” [Riel, OO
design heuristics, Addison Wesley 2002]



Introduction Work on OO Feature Identification Problems of OO Software Analysis Conclusions

SCALE

Good OO design fosters fragmentation

I Large classes and long methods are “code smells”
I Small classes and methods facilitate reuse and program

understanding
I Remedy: Break the system up into smaller classes, with

smaller methods

Results in a problem of scale
I Dependence graph size for procedural programs is more

or less linear
I This is certainly not the case for object-oriented programs:

I More classes and methods with their respective parameter
vertices

I Many polymorphic calls (with parameter edges)
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SCALE
Appendix C: Entire JSysDG for Example Code
This page is best viewed in colour (A colour image can be downloaded from:
http://www.cs.strath.ac.uk/~nw/documents.html).
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SUMMARY

I Conspiracy of three problems:
1. Accurate prediction of runtime dependencies from code is

impossible
2. Dependencies tend to cut across the system
3. Granular decomposition causes scalability problems

I Each ill-computed dependency will significantly amplify
problems 2 and 3

I The better designed a system is, the worse these problems
become
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SUMMARY

“The problem with object-oriented languages is they’ve got
all this implicit environment that they carry around with
them. You wanted a banana but what you got was a gorilla
holding the banana and the entire jungle.”

– Joe Armstrong
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CONCLUSIONS

I Accuracy of dependence analysis intricately tied to
accuracy of underlying analyses

I Results tend to be grossly inaccurate
I Cannot be ignored when interpreting OO dependence

analysis results
I Slices can easily become misleading
I Implications for comprehension tasks
I Implications for slice-based metrics?

I Demands new OO dependence analysis techniques
I Or at least new ways to interpret their results
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SEVERAL OF POTENTIAL SOLUTIONS

I Associate confidence measure with each dependence?
I Incorporate dynamic analysis - trace / profiling

information
I Can use test-set executions

I Incorporate infrastructures of code-based model-checking
platforms

I Exploit symbolic reasoning capacities of model-checking
platforms such as JPF, Bandera etc.

I These enable the incorporation of invariants, behavioural
models etc. into the analysis

I Use their ability to provide abstract models of irrelevant
classes



Introduction Work on OO Feature Identification Problems of OO Software Analysis Conclusions

SEVERAL OF POTENTIAL SOLUTIONS

I Associate confidence measure with each dependence?
I Incorporate dynamic analysis - trace / profiling

information
I Can use test-set executions

I Incorporate infrastructures of code-based model-checking
platforms

I Exploit symbolic reasoning capacities of model-checking
platforms such as JPF, Bandera etc.

I These enable the incorporation of invariants, behavioural
models etc. into the analysis

I Use their ability to provide abstract models of irrelevant
classes


	Introduction
	Work on OO Feature Identification
	Problems of OO Software Analysis
	Conclusions

