
Slicing State-based Models

Laurence Tratt
http://tratt.net/laurie/

Middlesex University

With thanks to Kelly Androutsopoulos and David Clark

2011/1/25

L. Tratt http://tratt.net/laurie/ Slicing FSMs 2011/1/25 1 / 20

http://tratt.net/laurie/
http://tratt.net/laurie/


What is a state-based model?

Generic term for many languages: statecharts, statemachines,
EFSMs etc.
Fundamentally: a system is in one state until it transitions to
another.

Conventionally represented graphically.

L. Tratt http://tratt.net/laurie/ Slicing FSMs 2011/1/25 2 / 20

http://tratt.net/laurie/


What is a state-based model?

Generic term for many languages: statecharts, statemachines,
EFSMs etc.
Fundamentally: a system is in one state until it transitions to
another.
Conventionally represented graphically.

L. Tratt http://tratt.net/laurie/ Slicing FSMs 2011/1/25 2 / 20

http://tratt.net/laurie/


A state-based model

L. Tratt http://tratt.net/laurie/ Slicing FSMs 2011/1/25 3 / 20

http://tratt.net/laurie/


A state-based model

L. Tratt http://tratt.net/laurie/ Slicing FSMs 2011/1/25 3 / 20

http://tratt.net/laurie/


A state-based model

States (every language)

L. Tratt http://tratt.net/laurie/ Slicing FSMs 2011/1/25 3 / 20

http://tratt.net/laurie/


A state-based model

Transitions (every language): event[guard]/action (most languages)

L. Tratt http://tratt.net/laurie/ Slicing FSMs 2011/1/25 3 / 20

http://tratt.net/laurie/


A state-based model

Other bits: start / end states (varies language to language)

L. Tratt http://tratt.net/laurie/ Slicing FSMs 2011/1/25 3 / 20

http://tratt.net/laurie/


A state-based model

Look Process

Sleep

Relate to my work

Clap

Boredom

Competitor

C
lapping

L. Tratt http://tratt.net/laurie/ Slicing FSMs 2011/1/25 3 / 20

http://tratt.net/laurie/


Where are state-based models used?

Generally not an end in themselves.
Typically used for modelling systems i.e. used as an abstraction.
Used for computing and non-computing systems (e.g. business
processes).
Most common form probably UML statemachines.
Short version: lots of them in the wild.

L. Tratt http://tratt.net/laurie/ Slicing FSMs 2011/1/25 4 / 20

http://tratt.net/laurie/


Why slice state-based models?

Program slice: the subset of a program relevant to a slicing
criterion.
In English: ‘the minimalish parts of the program relevant to a
specific point of interest.’

Motivation? Programs are big; slice them to a manageable size.
Same motivation for state-based models.
State-based models can also be huge (e.g. mobile phone models).

L. Tratt http://tratt.net/laurie/ Slicing FSMs 2011/1/25 5 / 20

http://tratt.net/laurie/


Why slice state-based models?

Program slice: the subset of a program relevant to a slicing
criterion.
In English: ‘the minimalish parts of the program relevant to a
specific point of interest.’
Motivation? Programs are big; slice them to a manageable size.

Same motivation for state-based models.
State-based models can also be huge (e.g. mobile phone models).

L. Tratt http://tratt.net/laurie/ Slicing FSMs 2011/1/25 5 / 20

http://tratt.net/laurie/


Why slice state-based models?

Program slice: the subset of a program relevant to a slicing
criterion.
In English: ‘the minimalish parts of the program relevant to a
specific point of interest.’
Motivation? Programs are big; slice them to a manageable size.
Same motivation for state-based models.
State-based models can also be huge (e.g. mobile phone models).

L. Tratt http://tratt.net/laurie/ Slicing FSMs 2011/1/25 5 / 20

http://tratt.net/laurie/


Why slice state-based models?

Look Process

Sleep

Relate to my work

Clap

Boredom

Competitor

C
lapping

L. Tratt http://tratt.net/laurie/ Slicing FSMs 2011/1/25 5 / 20

http://tratt.net/laurie/


Why slice state-based models?

Look Process

Relate to my work

Clap

L. Tratt http://tratt.net/laurie/ Slicing FSMs 2011/1/25 5 / 20

http://tratt.net/laurie/


Why not use program slicing?

Assertion: SBMs can be encoded as programs and vice versa.

Intuition: transitions are just gotos.
Question: why not translate SBMs to programs and slice those?

L. Tratt http://tratt.net/laurie/ Slicing FSMs 2011/1/25 6 / 20

http://tratt.net/laurie/


Why not use program slicing?

Assertion: SBMs can be encoded as programs and vice versa.
Intuition: transitions are just gotos.

Question: why not translate SBMs to programs and slice those?

L. Tratt http://tratt.net/laurie/ Slicing FSMs 2011/1/25 6 / 20

http://tratt.net/laurie/


Why not use program slicing?

Assertion: SBMs can be encoded as programs and vice versa.
Intuition: transitions are just gotos.
Question: why not translate SBMs to programs and slice those?

L. Tratt http://tratt.net/laurie/ Slicing FSMs 2011/1/25 6 / 20

http://tratt.net/laurie/


Why SBM slicing is different (1)

Input SBM: A B CX Y

What we hope for: A CX

Translate to:
state := A; if (next_event() == X) goto B else ...
B: state := B; if (next_event() == Y) goto C else ...
C: state := C

To work, need to rewrite to:
state := A; if (next_event() == X) goto C else ?
C: state := C

Slicing goto programs is hard and difficult.
SBM slicing has to acknowledge (and make use of) graph
structures.

L. Tratt http://tratt.net/laurie/ Slicing FSMs 2011/1/25 7 / 20

http://tratt.net/laurie/


Why SBM slicing is different (1)

Input SBM: A B CX Y

What we hope for: A CX

Translate to:
state := A; if (next_event() == X) goto B else ...
B: state := B; if (next_event() == Y) goto C else ...
C: state := C

To work, need to rewrite to:
state := A; if (next_event() == X) goto C else ?
C: state := C

Slicing goto programs is hard and difficult.
SBM slicing has to acknowledge (and make use of) graph
structures.

L. Tratt http://tratt.net/laurie/ Slicing FSMs 2011/1/25 7 / 20

http://tratt.net/laurie/


Why SBM slicing is different (1)

Input SBM: A B CX Y

What we hope for: A CX

Translate to:
state := A; if (next_event() == X) goto B else ...
B: state := B; if (next_event() == Y) goto C else ...
C: state := C

To work, need to rewrite to:
state := A; if (next_event() == X) goto C else ?
C: state := C

Slicing goto programs is hard and difficult.
SBM slicing has to acknowledge (and make use of) graph
structures.

L. Tratt http://tratt.net/laurie/ Slicing FSMs 2011/1/25 7 / 20

http://tratt.net/laurie/


Why SBM slicing is different (1)

Input SBM: A B CX Y

What we hope for: A CX

Translate to:
state := A; if (next_event() == X) goto B else ...
B: state := B; if (next_event() == Y) goto C else ...
C: state := C

To work, need to rewrite to:
state := A; if (next_event() == X) goto C else ?
C: state := C

Slicing goto programs is hard and difficult.
SBM slicing has to acknowledge (and make use of) graph
structures.

L. Tratt http://tratt.net/laurie/ Slicing FSMs 2011/1/25 7 / 20

http://tratt.net/laurie/


Why SBM slicing is different (1)

Input SBM: A B CX Y

What we hope for: A CX

Translate to:
state := A; if (next_event() == X) goto B else ...
B: state := B; if (next_event() == Y) goto C else ...
C: state := C

To work, need to rewrite to:
state := A; if (next_event() == X) goto C else ?
C: state := C

Slicing goto programs is hard and difficult.
SBM slicing has to acknowledge (and make use of) graph
structures.

L. Tratt http://tratt.net/laurie/ Slicing FSMs 2011/1/25 7 / 20

http://tratt.net/laurie/


Why SBM slicing is different (2)

Assume #1 doesn’t occur.

The chances of program slicing respecting the granularity of the
SBM are small.
A program slicer might produce:
state := A
B: if (next_event() == Y) goto C;
C: state := C

What SBM does that map back to?
Fundamentally: we need an isomorphism between A→ B and
B → A′, but program slicing can’t provide that.

L. Tratt http://tratt.net/laurie/ Slicing FSMs 2011/1/25 8 / 20

http://tratt.net/laurie/


Why SBM slicing is different (2)

Assume #1 doesn’t occur.
The chances of program slicing respecting the granularity of the
SBM are small.
A program slicer might produce:
state := A
B: if (next_event() == Y) goto C;
C: state := C

What SBM does that map back to?
Fundamentally: we need an isomorphism between A→ B and
B → A′, but program slicing can’t provide that.

L. Tratt http://tratt.net/laurie/ Slicing FSMs 2011/1/25 8 / 20

http://tratt.net/laurie/


Why SBM slicing is different (2)

Assume #1 doesn’t occur.
The chances of program slicing respecting the granularity of the
SBM are small.
A program slicer might produce:
state := A
B: if (next_event() == Y) goto C;
C: state := C

What SBM does that map back to?
Fundamentally: we need an isomorphism between A→ B and
B → A′, but program slicing can’t provide that.

L. Tratt http://tratt.net/laurie/ Slicing FSMs 2011/1/25 8 / 20

http://tratt.net/laurie/


Why SBM slicing is different (3)

SBM features map nicely onto PL features and vice versa.

...except one...

Not many programming languages with non-determinism...
So we have to encode that. Two problems:

1 What non-determinism to encode? SBM formalisms rarely define
how to resolve non-determinism; irrelevant for specifications.

2 Translating back has problems (#2 in disguise).

L. Tratt http://tratt.net/laurie/ Slicing FSMs 2011/1/25 9 / 20

http://tratt.net/laurie/


Why SBM slicing is different (3)

SBM features map nicely onto PL features and vice versa.
...except one...

A

B

C

X

Y

Not many programming languages with non-determinism...
So we have to encode that. Two problems:

1 What non-determinism to encode? SBM formalisms rarely define
how to resolve non-determinism; irrelevant for specifications.

2 Translating back has problems (#2 in disguise).

L. Tratt http://tratt.net/laurie/ Slicing FSMs 2011/1/25 9 / 20

http://tratt.net/laurie/


Why SBM slicing is different (3)

SBM features map nicely onto PL features and vice versa.
...except one...

A

B

C

Not many programming languages with non-determinism...

So we have to encode that. Two problems:
1 What non-determinism to encode? SBM formalisms rarely define

how to resolve non-determinism; irrelevant for specifications.
2 Translating back has problems (#2 in disguise).

L. Tratt http://tratt.net/laurie/ Slicing FSMs 2011/1/25 9 / 20

http://tratt.net/laurie/


Why SBM slicing is different (3)

SBM features map nicely onto PL features and vice versa.
...except one...

A

B

C

Not many programming languages with non-determinism...
So we have to encode that. Two problems:

1 What non-determinism to encode? SBM formalisms rarely define
how to resolve non-determinism; irrelevant for specifications.

2 Translating back has problems (#2 in disguise).

L. Tratt http://tratt.net/laurie/ Slicing FSMs 2011/1/25 9 / 20

http://tratt.net/laurie/


Applications

As program slicing, many potential applications.

Model comprehension.
Model checking.
Testing.
etc.

L. Tratt http://tratt.net/laurie/ Slicing FSMs 2011/1/25 10 / 20

http://tratt.net/laurie/


Applications

As program slicing, many potential applications.
Model comprehension.

Model checking.
Testing.
etc.

L. Tratt http://tratt.net/laurie/ Slicing FSMs 2011/1/25 10 / 20

http://tratt.net/laurie/


Applications

As program slicing, many potential applications.
Model comprehension.
Model checking.

Testing.
etc.

L. Tratt http://tratt.net/laurie/ Slicing FSMs 2011/1/25 10 / 20

http://tratt.net/laurie/


Applications

As program slicing, many potential applications.
Model comprehension.
Model checking.
Testing.

etc.

L. Tratt http://tratt.net/laurie/ Slicing FSMs 2011/1/25 10 / 20

http://tratt.net/laurie/


Applications

As program slicing, many potential applications.
Model comprehension.
Model checking.
Testing.
etc.

L. Tratt http://tratt.net/laurie/ Slicing FSMs 2011/1/25 10 / 20

http://tratt.net/laurie/


The SLIM project

SLIcing state based Models (SLIM).
EPSRC funded project, first at King’s and now at UCL (and a few hangers

on like me).

Building upon previous work (e.g. Korel et al.) and advancing the
art w.r.t. SBM slicing.

L. Tratt http://tratt.net/laurie/ Slicing FSMs 2011/1/25 11 / 20

http://tratt.net/laurie/


The SLIM project

SLIcing state based Models (SLIM).
EPSRC funded project, first at King’s and now at UCL (and a few hangers

on like me).

Building upon previous work (e.g. Korel et al.) and advancing the
art w.r.t. SBM slicing.

L. Tratt http://tratt.net/laurie/ Slicing FSMs 2011/1/25 11 / 20

http://tratt.net/laurie/


Problem #1: dependency

Data dependency is easy.
Control dependency (CD) isn’t—but it’s the heart of slicing!

Underlying question: should CD be sensitive or insensitive to
non-termination?
Dealing with non-terminating SBMs is non-trivial.
No existing definition ideal.
New CD definition UNTICD (FASE 2009) subsumes Korel et al.’s
CD definition; and has neat correspondences with NTICD and
NTSCD.

L. Tratt http://tratt.net/laurie/ Slicing FSMs 2011/1/25 12 / 20

http://tratt.net/laurie/


Problem #1: dependency

Data dependency is easy.
Control dependency (CD) isn’t—but it’s the heart of slicing!
Underlying question: should CD be sensitive or insensitive to
non-termination?

Dealing with non-terminating SBMs is non-trivial.
No existing definition ideal.
New CD definition UNTICD (FASE 2009) subsumes Korel et al.’s
CD definition; and has neat correspondences with NTICD and
NTSCD.

L. Tratt http://tratt.net/laurie/ Slicing FSMs 2011/1/25 12 / 20

http://tratt.net/laurie/


Problem #1: dependency

Data dependency is easy.
Control dependency (CD) isn’t—but it’s the heart of slicing!
Underlying question: should CD be sensitive or insensitive to
non-termination?
Dealing with non-terminating SBMs is non-trivial.
No existing definition ideal.

New CD definition UNTICD (FASE 2009) subsumes Korel et al.’s
CD definition; and has neat correspondences with NTICD and
NTSCD.

L. Tratt http://tratt.net/laurie/ Slicing FSMs 2011/1/25 12 / 20

http://tratt.net/laurie/


Problem #1: dependency

Data dependency is easy.
Control dependency (CD) isn’t—but it’s the heart of slicing!
Underlying question: should CD be sensitive or insensitive to
non-termination?
Dealing with non-terminating SBMs is non-trivial.
No existing definition ideal.
New CD definition UNTICD (FASE 2009) subsumes Korel et al.’s
CD definition; and has neat correspondences with NTICD and
NTSCD.

L. Tratt http://tratt.net/laurie/ Slicing FSMs 2011/1/25 12 / 20

http://tratt.net/laurie/


Problem #1: dependency (2)

Realisation: ‘best’ dependency depends on your application.
e.g. NTSCD good for model-checking; UNTICD better for many
other uses.

Adapted WOD (Amtoft et al.) for SBMs.
Differs significantly from UNTICD when no data dependency;
subtly different in other ways.
Several empirical studies done (under review) to help determine
which CD is best.
Perhaps work to do: both UNTICD and WOD can introduce new
non-determinism.

L. Tratt http://tratt.net/laurie/ Slicing FSMs 2011/1/25 13 / 20

http://tratt.net/laurie/


Problem #1: dependency (2)

Realisation: ‘best’ dependency depends on your application.
e.g. NTSCD good for model-checking; UNTICD better for many
other uses.
Adapted WOD (Amtoft et al.) for SBMs.
Differs significantly from UNTICD when no data dependency;
subtly different in other ways.

Several empirical studies done (under review) to help determine
which CD is best.
Perhaps work to do: both UNTICD and WOD can introduce new
non-determinism.

L. Tratt http://tratt.net/laurie/ Slicing FSMs 2011/1/25 13 / 20

http://tratt.net/laurie/


Problem #1: dependency (2)

Realisation: ‘best’ dependency depends on your application.
e.g. NTSCD good for model-checking; UNTICD better for many
other uses.
Adapted WOD (Amtoft et al.) for SBMs.
Differs significantly from UNTICD when no data dependency;
subtly different in other ways.
Several empirical studies done (under review) to help determine
which CD is best.
Perhaps work to do: both UNTICD and WOD can introduce new
non-determinism.

L. Tratt http://tratt.net/laurie/ Slicing FSMs 2011/1/25 13 / 20

http://tratt.net/laurie/


Problem #2: slicing

Korel et al.’s algorithms (1 and 2) the only amorphous SBM slicers.
Tends to produce large slices, but not easy to improve upon.

L. Tratt http://tratt.net/laurie/ Slicing FSMs 2011/1/25 14 / 20

http://tratt.net/laurie/


Lift example

T1:setTimer/timer:=5

T2:waitTimer[timer>0]/timer:=timer - 1

T3:ready[timer==0]

T4:closing

T11:openTimer[timer>0]/timer:=timer-1

T12:tim
eout T10:fullyOpened

T9:opening

T5:buttonInterrupt/timer:=3

T8:open/tim
er:=

10T6:fullyClosed

T7:closeTimer

start wait opening

closed

opened

closing

L. Tratt http://tratt.net/laurie/ Slicing FSMs 2011/1/25 15 / 20

http://tratt.net/laurie/


Lift example

T1:setTimer/timer:=5

T2:waitTimer[timer>0]/timer:=timer - 1

T3:ready[timer==0]

T4:closing

T11:openTimer[timer>0]/timer:=timer-1

T12:tim
eout T10:fullyOpened

T9:opening

T5:buttonInterrupt/timer:=3

T8:open/tim
er:=

10T6:fullyClosed

T7:closeTimer

start wait opening

closed

opened

closing

L. Tratt http://tratt.net/laurie/ Slicing FSMs 2011/1/25 15 / 20

http://tratt.net/laurie/


Amorphous slicing algorithm

Essentials:

1. Mpost ← Mpre
2. DG← compute_dependence_graph(CDdef ,Mpre)
3. Mpost ← traverse_backwards_marking(tsc ,Vsc ,DG)
4. Mpost ← anonymise_unmarked_transitions(Mpost )
5. while apply_rule1(Mpost ) or apply_rule2(Mpost )

or apply_rule3(Mpost ) do
6: end while
7: apply_epsilon_elimination(Mpost )
8: garbage_collect(Mpost )
9. StoMerge ← right_invariant_equivalence(Mpost )
10. merge_states(StoMerge,Mpost )
11. StoMerge ← left_invariant_equivalence(Mpost )
12. merge_states(StoMerge,Mpost )
13. return Mpost

L. Tratt http://tratt.net/laurie/ Slicing FSMs 2011/1/25 16 / 20

http://tratt.net/laurie/


Lift example

T1:setTimer/timer:=5

T2:waitTimer[timer>0]/timer:=timer - 1

T3:ready[timer==0]

T4:closing

T11:openTimer[timer>0]/timer:=timer-1

T12:tim
eout T10:fullyOpened

T9:opening

T5:buttonInterrupt/timer:=3

T8:open/tim
er:=

10T6:fullyClosed

T7:closeTimer

start wait opening

closed

opened

closing

L. Tratt http://tratt.net/laurie/ Slicing FSMs 2011/1/25 17 / 20

http://tratt.net/laurie/


Lift example

T11:openTimer[timer>0]/timer:=timer-1

T12:timeout

T5:buttonInterrupt/timer:=3

T8:open/timer:=10

T6:fullyClosed
start/wait/closing

opened/opening

closed

Korel et al.’s slicing algorithm2 with NTICD

L. Tratt http://tratt.net/laurie/ Slicing FSMs 2011/1/25 17 / 20

http://tratt.net/laurie/


Lift example

SLIM(NTICD)

L. Tratt http://tratt.net/laurie/ Slicing FSMs 2011/1/25 17 / 20

http://tratt.net/laurie/


Lift example

T11:openTimer[timer>0]/timer:=timer-1

T12
:tim

eou
t T10:fullyOpened

T5:buttonInterrupt/timer:=3

T8:
ope

n/t
ime

r:=
10T6:fullyClosed

opening

closed

opened

start/wait/closing

SLIM(UNTICD)

L. Tratt http://tratt.net/laurie/ Slicing FSMs 2011/1/25 17 / 20

http://tratt.net/laurie/


Relative slice sizes

100%90%80%70%60%50%40%30%20%10%0

50

40

30

20

10

0

-10

Unique Transition
Transition
State

NTICD+DD

SLIM & Korel et. al’s algorithm2 with NTICD

L. Tratt http://tratt.net/laurie/ Slicing FSMs 2011/1/25 18 / 20

http://tratt.net/laurie/


Relative slice sizes

100%90%80%70%60%50%40%30%20%10%0

15

10

5

0

-5

Unique Transition
Transition
State

NTSCD+DD

SLIM & Korel et. al’s algorithm2 with NTSCD

L. Tratt http://tratt.net/laurie/ Slicing FSMs 2011/1/25 18 / 20

http://tratt.net/laurie/


Relative slice sizes

100%90%80%70%60%50%40%30%20%10%0

15

10

5

0

-5

Unique Transition
Transition
State

UNTICD+DD

SLIM & Korel et. al’s algorithm2 with UNTICD

L. Tratt http://tratt.net/laurie/ Slicing FSMs 2011/1/25 18 / 20

http://tratt.net/laurie/


Software

The CREST slicing tool.
Python tool which can slice SBMs in several different ways.
Pluggable control dependency etc.
Able to visualize huge SBMs with Graphviz.
To appear soonish.

L. Tratt http://tratt.net/laurie/ Slicing FSMs 2011/1/25 19 / 20

http://tratt.net/laurie/


Summary

Slicing SBMs is useful and not easy.
SLIM has pushed the state of the art forward considerably.
Ready for real-world in some parts; in others, important questions
to be answered.

Thanks for listening

L. Tratt http://tratt.net/laurie/ Slicing FSMs 2011/1/25 20 / 20

http://tratt.net/laurie/


Summary

Slicing SBMs is useful and not easy.
SLIM has pushed the state of the art forward considerably.
Ready for real-world in some parts; in others, important questions
to be answered.

Thanks for listening

L. Tratt http://tratt.net/laurie/ Slicing FSMs 2011/1/25 20 / 20

http://tratt.net/laurie/

	

