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What is a state-based model?

Generic term for many languages: statecharts, statemachines,
EFSMs etc.
Fundamentally: a system is in one state until it transitions to
another.

Conventionally represented graphically.
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A state-based model

States (every language)
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A state-based model

Transitions (every language): event[guard]/action (most languages)
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A state-based model

Other bits: start / end states (varies language to language)
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A state-based model

Look Process

Sleep

Relate to my work

Clap

Boredom

Competitor

C
lapping
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Where are state-based models used?

Generally not an end in themselves.
Typically used for modelling systems i.e. used as an abstraction.
Used for computing and non-computing systems (e.g. business
processes).
Most common form probably UML statemachines.
Short version: lots of them in the wild.
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Why slice state-based models?

Program slice: the subset of a program relevant to a slicing
criterion.
In English: ‘the minimalish parts of the program relevant to a
specific point of interest.’

Motivation? Programs are big; slice them to a manageable size.
Same motivation for state-based models.
State-based models can also be huge (e.g. mobile phone models).
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Why not use program slicing?

Assertion: SBMs can be encoded as programs and vice versa.

Intuition: transitions are just gotos.
Question: why not translate SBMs to programs and slice those?
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Why SBM slicing is different (1)

Input SBM: A B CX Y

What we hope for: A CX

Translate to:
state := A; if (next_event() == X) goto B else ...
B: state := B; if (next_event() == Y) goto C else ...
C: state := C

To work, need to rewrite to:
state := A; if (next_event() == X) goto C else ?
C: state := C

Slicing goto programs is hard and difficult.
SBM slicing has to acknowledge (and make use of) graph
structures.
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Why SBM slicing is different (2)

Assume #1 doesn’t occur.

The chances of program slicing respecting the granularity of the
SBM are small.
A program slicer might produce:
state := A
B: if (next_event() == Y) goto C;
C: state := C

What SBM does that map back to?
Fundamentally: we need an isomorphism between A→ B and
B → A′, but program slicing can’t provide that.
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Why SBM slicing is different (3)

SBM features map nicely onto PL features and vice versa.

...except one...

Not many programming languages with non-determinism...
So we have to encode that. Two problems:

1 What non-determinism to encode? SBM formalisms rarely define
how to resolve non-determinism; irrelevant for specifications.

2 Translating back has problems (#2 in disguise).
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Applications

As program slicing, many potential applications.

Model comprehension.
Model checking.
Testing.
etc.
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The SLIM project

SLIcing state based Models (SLIM).
EPSRC funded project, first at King’s and now at UCL (and a few hangers

on like me).

Building upon previous work (e.g. Korel et al.) and advancing the
art w.r.t. SBM slicing.
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Problem #1: dependency

Data dependency is easy.
Control dependency (CD) isn’t—but it’s the heart of slicing!

Underlying question: should CD be sensitive or insensitive to
non-termination?
Dealing with non-terminating SBMs is non-trivial.
No existing definition ideal.
New CD definition UNTICD (FASE 2009) subsumes Korel et al.’s
CD definition; and has neat correspondences with NTICD and
NTSCD.
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Problem #1: dependency (2)

Realisation: ‘best’ dependency depends on your application.
e.g. NTSCD good for model-checking; UNTICD better for many
other uses.

Adapted WOD (Amtoft et al.) for SBMs.
Differs significantly from UNTICD when no data dependency;
subtly different in other ways.
Several empirical studies done (under review) to help determine
which CD is best.
Perhaps work to do: both UNTICD and WOD can introduce new
non-determinism.
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Problem #2: slicing

Korel et al.’s algorithms (1 and 2) the only amorphous SBM slicers.
Tends to produce large slices, but not easy to improve upon.
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Lift example

T1:setTimer/timer:=5

T2:waitTimer[timer>0]/timer:=timer - 1

T3:ready[timer==0]

T4:closing

T11:openTimer[timer>0]/timer:=timer-1

T12:tim
eout T10:fullyOpened

T9:opening

T5:buttonInterrupt/timer:=3

T8:open/tim
er:=

10T6:fullyClosed

T7:closeTimer

start wait opening

closed

opened

closing
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Amorphous slicing algorithm

Essentials:

1. Mpost ← Mpre
2. DG← compute_dependence_graph(CDdef ,Mpre)
3. Mpost ← traverse_backwards_marking(tsc ,Vsc ,DG)
4. Mpost ← anonymise_unmarked_transitions(Mpost )
5. while apply_rule1(Mpost ) or apply_rule2(Mpost )

or apply_rule3(Mpost ) do
6: end while
7: apply_epsilon_elimination(Mpost )
8: garbage_collect(Mpost )
9. StoMerge ← right_invariant_equivalence(Mpost )
10. merge_states(StoMerge,Mpost )
11. StoMerge ← left_invariant_equivalence(Mpost )
12. merge_states(StoMerge,Mpost )
13. return Mpost
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Lift example

T11:openTimer[timer>0]/timer:=timer-1

T12:timeout

T5:buttonInterrupt/timer:=3

T8:open/timer:=10

T6:fullyClosed
start/wait/closing

opened/opening

closed

Korel et al.’s slicing algorithm2 with NTICD
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Lift example

SLIM(NTICD)
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Lift example

T11:openTimer[timer>0]/timer:=timer-1

T12
:tim

eou
t T10:fullyOpened

T5:buttonInterrupt/timer:=3

T8:
ope

n/t
ime

r:=
10T6:fullyClosed

opening

closed

opened

start/wait/closing

SLIM(UNTICD)
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Relative slice sizes
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SLIM & Korel et. al’s algorithm2 with NTICD
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Software

The CREST slicing tool.
Python tool which can slice SBMs in several different ways.
Pluggable control dependency etc.
Able to visualize huge SBMs with Graphviz.
To appear soonish.
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Summary

Slicing SBMs is useful and not easy.
SLIM has pushed the state of the art forward considerably.
Ready for real-world in some parts; in others, important questions
to be answered.

Thanks for listening
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