Slicing State-based Models

Laurence Tratt
http://tratt.net/laurie/

Middlesex University

With thanks to Kelly Androutsopoulos and David Clark

2011/1/25

L. Tratt http://tratt.net/laurie Slicing FSMs 2011/1/25

http://tratt.net/laurie/
http://tratt.net/laurie/

What is a state-based model?

@ Generic term for many languages: statecharts, statemachines,
EFSMs etc.

@ Fundamentally: a system is in one state until it transitions to
another.

L. Tratt http://tratt.net/laurie/ Slicing FSMs 2011/1/25 2/20

http://tratt.net/laurie/

What is a state-based model?

@ Generic term for many languages: statecharts, statemachines,
EFSMs etc.

@ Fundamentally: a system is in one state until it transitions to
another.

@ Conventionally represented graphically.

L. Tratt http://tratt.net/laurie/ Slicing FSMs 2011/1/25 2/20

http://tratt.net/laurie/

A state-based model

L. Tratt http://tratt.net/laurie Slicing FSMs 2011/1/25 3/20

http://tratt.net/laurie/

A state-based model

L. Tratt http://tratt.net/laurie/ Slicing FSMs 2011/1/25 3/20

http://tratt.net/laurie/

A state-based model

States (every language)

L. Tratt http://tratt.r Slicing FSMs 2011/1/25 3/20

http://tratt.net/laurie/

A state-based model

Transitions (every language): event{guard|/action (most languages)

L. Tratt http://tratt.r / Slicing FSMs 2011/1/25 3/20

http://tratt.net/laurie/

A state-based model

Other bits: start / end states (varies language to language)

L. Tratt http://tratt.r / Slicing FSMs 2011/1/25 3/20

http://tratt.net/laurie/

A state-based model

.—)(Look)—»(Process)

C"%% (Relate to my work)
‘o

L. Tratt http://tra et/laurie/ Slicing FSMs 2011/1/25 3/20

http://tratt.net/laurie/

Where are state-based models used?

@ Generally not an end in themselves.
@ Typically used for modelling systems i.e. used as an abstraction.

@ Used for computing and non-computing systems (e.g. business
processes).

@ Most common form probably UML statemachines.
@ Short version: lots of them in the wild.

L. Tratt http://tratt.net/laurie/ Slicing FSMs 2011/1/25 4/20

http://tratt.net/laurie/

Why slice state-based models?

@ Program slice: the subset of a program relevant to a slicing
criterion.

@ In English: ‘the minimalish parts of the program relevant to a
specific point of interest.

L. Tratt http://tratt.net/laurie/ Slicing FSMs 2011/1/25 5/20

http://tratt.net/laurie/

Why slice state-based models?

@ Program slice: the subset of a program relevant to a slicing
criterion.

@ In English: ‘the minimalish parts of the program relevant to a
specific point of interest.

@ Motivation? Programs are big; slice them to a manageable size.

L. Tratt http://tratt.net/laurie/ Slicing FSMs 2011/1/25 5/20

http://tratt.net/laurie/

Why slice state-based models?

@ Program slice: the subset of a program relevant to a slicing
criterion.

@ In English: ‘the minimalish parts of the program relevant to a
specific point of interest.

@ Motivation? Programs are big; slice them to a manageable size.
@ Same motivation for state-based models.
@ State-based models can also be huge (e.g. mobile phone models).

L. Tratt http://tratt.net/laurie/ Slicing FSMs 2011/1/25 5/20

http://tratt.net/laurie/

Why slice state-based models?

.—)(Look)—»(Process)

C"%% (Relate to my work)
‘o

L. Tratt http://tra et/laurie/ Slicing FSMs 2011/1/25 5/20

http://tratt.net/laurie/

Why slice state-based models?

.—)(Look)—»(Process) O

(Relate to my work)

L. Tratt http://tratt.net/laurie/ Slicing FSMs 2011/1/25 5/20

http://tratt.net/laurie/

Why not use program slicing?

@ Assertion: SBMs can be encoded as programs and vice versa.

L. Tratt http://tratt.net/laurie Slicing FSMs 2011/1/25 6/20

http://tratt.net/laurie/

Why not use program slicing?

@ Assertion: SBMs can be encoded as programs and vice versa.
@ Intuition: transitions are just gotos.

L. Tratt http://tratt.net/laurie/ Slicing FSMs 2011/1/25 6/20

http://tratt.net/laurie/

Why not use program slicing?

@ Assertion: SBMs can be encoded as programs and vice versa.
@ Intuition: transitions are just gotos.
@ Question: why not translate SBMs to programs and slice those?

L. Tratt http://tratt.net/laurie/ Slicing FSMs 2011/1/25 6/20

http://tratt.net/laurie/

Why SBM slicing is different (1)
@ Input SBM: (A)X(B)Y[c)

L. Tratt http://tratt.r Slicing FSMs 2011/1/25 7120

http://tratt.net/laurie/

Why SBM slicing is different (1)

@ Input SBM: Cr)8)y>(c)
@ What we hope for: -

L. Tratt http://tratt.r / Slicing FSMs 2011/1/25 7120

http://tratt.net/laurie/

Why SBM slicing is different (1)

@ Input SBM: Cr)8)y>(c)
@ What we hope for: -

@ Translate to:

state := A; if (next_event() == X) goto B else ...
B: state := B; if (next_event() == Y) goto C else ...
C: state := C

L. Tratt http://tratt.net/laurie/ Slicing FSMs 2011/1/25

http://tratt.net/laurie/

Why SBM slicing is different (1)

@ Input SBM: Cr)8)y>(c)
@ What we hope for: -

@ Translate to:

state := A; if (next_event() == X) goto B else
B: state := B; if (next_event() == Y) goto C else ...
C: state := C
@ To work, need to rewrite to:
state := A; if (next_event() == X) goto C else ?
C: state :=C

L. Tratt http: ratt.net/laurie/ Slicing FSMs 2011/1/25

http://tratt.net/laurie/

Why SBM slicing is different (1)

@ Input SBM: Cr)8)y>(c)
@ What we hope for: -

@ Translate to:

state := A; if (next_event() == X) goto B else ...
B: state := B; if (next_event() == Y) goto C else ...
C: state := C

@ To work, need to rewrite to:
state := A; if (next_event() == X) goto C else ?
C: state :=C

@ Slicing goto programs is hard and difficult.

@ SBM slicing has to acknowledge (and make use of) graph
structures.

L. Tratt http://tratt.net/laurie/ Slicing FSMs 2011/1/25

http://tratt.net/laurie/

Why SBM slicing is different (2)

@ Assume #1 doesn’t occur.

L. Tratt http://tratt.net/laurie Slicing FSMs 2011/1/25 8/20

http://tratt.net/laurie/

Why SBM slicing is different (2)

@ Assume #1 doesn’t occur.

@ The chances of program slicing respecting the granularity of the
SBM are small.

@ A program slicer might produce:
state := A
B: if (next_event () == Y) goto C;
C: state :=C

L. Tratt http://tratt.net/laurie/ Slicing FSMs 2011/1/25

http://tratt.net/laurie/

Why SBM slicing is different (2)

@ Assume #1 doesn’t occur.

@ The chances of program slicing respecting the granularity of the
SBM are small.

@ A program slicer might produce:

state := A
B: if (next_event () == Y) goto C;
C: state :=C

@ What SBM does that map back to?

@ Fundamentally: we need an isomorphism between A — B and
B — A, but program slicing can’t provide that.

L. Tratt http://tratt.net/laurie/ Slicing FSMs 2011/1/25 8/20

http://tratt.net/laurie/

Why SBM slicing is different (3)

@ SBM features map nicely onto PL features and vice versa.

L. Tratt http://tratt.net/laurie Slicing FSMs 2011/1/25 9/20

http://tratt.net/laurie/

Why SBM slicing is different (3)

@ SBM features map nicely onto PL features and vice versa.
@ ...except one...

L. Tratt http://tratt.net/laurie/ Slicing FSMs 2011/1/25 9/20

http://tratt.net/laurie/

Why SBM slicing is different (3)

@ SBM features map nicely onto PL features and vice versa.
@ ...except one...

@ Not many programming languages with non-determinism...

L. Tratt http://tratt.net/laurie/ Slicing FSMs 2011/1/25

http://tratt.net/laurie/

Why SBM slicing is different (3)

@ SBM features map nicely onto PL features and vice versa.
@ ...except one...

@ Not many programming languages with non-determinism...
@ So we have to encode that. Two problems:

@ What non-determinism to encode? SBM formalisms rarely define
how to resolve non-determinism; irrelevant for specifications.
@ Translating back has problems (#2 in disguise).

L. Tratt http://tratt.net/laurie/ Slicing FSMs 2011/1/25 9/20

http://tratt.net/laurie/

Applications

@ As program slicing, many potential applications.

L. Tratt http: ratt.net/laurie Slicing FSMs 2011/1/25 10/20

http://tratt.net/laurie/

Applications

@ As program slicing, many potential applications.
@ Model comprehension.

L. Tratt http: ratt.net/laurie Slicing FSMs 2011/1/25 10/20

http://tratt.net/laurie/

Applications

@ As program slicing, many potential applications.
@ Model comprehension.
@ Model checking.

L. Tratt http://tratt.net/laurie/ Slicing FSMs 2011/1/25 10/20

http://tratt.net/laurie/

Applications

@ As program slicing, many potential applications.
@ Model comprehension.

@ Model checking.

@ Testing.

L. Tratt http://tratt.net/laurie/ Slicing FSMs 2011/1/25 10/20

http://tratt.net/laurie/

Applications

@ As program slicing, many potential applications.
@ Model comprehension.

@ Model checking.

@ Testing.

@ etc.

L. Tratt http://tratt.net/laurie/ Slicing FSMs 2011/1/25 10/20

http://tratt.net/laurie/

The SLIM project

@ Sllcing state based Models (SLIM).
@ EPSRC funded project, first at King’s and now at UCL (and a few hangers

on like me).

L. Tratt http://tratt.net/laurie/ Slicing FSMs 2011/1/25 11/20

http://tratt.net/laurie/

The SLIM project

@ Sllcing state based Models (SLIM).

@ EPSRC funded project, first at King’s and now at UCL (and a few hangers
on like me).

@ Building upon previous work (e.g. Korel et al.) and advancing the
art w.r.t. SBM slicing.

L. Tratt http://tratt.net/laurie/ Slicing FSMs 2011/1/25 11/20

http://tratt.net/laurie/

Problem #1: dependency

@ Data dependency is easy.
@ Control dependency (CD) isn’'t—but it's the heart of slicing!

L. Tratt http://tratt.net/laurie Slicing FSMs 2011/1/25 12/20

http://tratt.net/laurie/

Problem #1: dependency

@ Data dependency is easy.
@ Control dependency (CD) isn’'t—but it's the heart of slicing!

@ Underlying question: should CD be sensitive or insensitive to
non-termination?

L. Tratt http://tratt.net/laurie/ Slicing FSMs 2011/1/25 12/20

http://tratt.net/laurie/

Problem #1: dependency

@ Data dependency is easy.
@ Control dependency (CD) isn’'t—but it's the heart of slicing!

@ Underlying question: should CD be sensitive or insensitive to
non-termination?

@ Dealing with non-terminating SBMs is non-trivial.
@ No existing definition ideal.

L. Tratt http://tratt.net/laurie/ Slicing FSMs 2011/1/25

http://tratt.net/laurie/

Problem #1: dependency

Data dependency is easy.
Control dependency (CD) isn't—but it’s the heart of slicing!

Underlying question: should CD be sensitive or insensitive to
non-termination?

Dealing with non-terminating SBMs is non-trivial.
No existing definition ideal.

New CD definition UNTICD (FASE 2009) subsumes Korel et al.s
CD definition; and has neat correspondences with NTICD and
NTSCD.

L. Tratt h

ttp://tratt.net/laurie/ Slicing FSMs 2011/1/25 12/20

http://tratt.net/laurie/

Problem #1: dependency (2)

@ Realisation: ‘best’ dependency depends on your application.

@ e.g. NTSCD good for model-checking; UNTICD better for many
other uses.

L. Tratt http://tratt.r / Slicing FSMs 2011/1/25 13/20

http://tratt.net/laurie/

Problem #1: dependency (2)

@ Realisation: ‘best’ dependency depends on your application.

@ e.g. NTSCD good for model-checking; UNTICD better for many
other uses.

@ Adapted WOD (Amtoft et al.) for SBMs.

@ Differs significantly from UNTICD when no data dependency;
subtly different in other ways.

L. Tratt http://tratt.net/laurie/ Slicing FSMs 2011/1/25 13/20

http://tratt.net/laurie/

Problem #1: dependency (2)

@ Realisation: ‘best’ dependency depends on your application.

@ e.g. NTSCD good for model-checking; UNTICD better for many
other uses.

@ Adapted WOD (Amtoft et al.) for SBMs.

@ Differs significantly from UNTICD when no data dependency;
subtly different in other ways.

@ Several empirical studies done (under review) to help determine
which CD is best.

@ Perhaps work to do: both UNTICD and WOD can introduce new
non-determinism.

L. Tratt http://tratt.r / Slicing FSMs 2011/1/25 13/20

http://tratt.net/laurie/

Problem #2: slicing

@ Korel et al’s algorithms (' and 2) the only amorphous SBM slicers.
@ Tends to produce large slices, but not easy to improve upon.

L. Tratt http://tratt.net/laurie/ Slicing FSMs 2011/1/25 14/20

http://tratt.net/laurie/

Lift example

T1l:openTimer[timer>0]/timer:=timer-1

T2:waitTimer[timer>0]/timer:=timer - T4:closing

T1:setTimer/timer:= T3:ready[timer==0
‘ start ; alt yl 1N

T9:0opening

T5:buttonInterrupt/timer:=3

»{opening

T7:closeTimer

Slicing FSMs 2011/1/25 15/20

http://tratt.net/laurie/

Lift example

T1l:openTimer[timer>0]/timer:=timer-1

T2:waitTimer[timer>0]/timer:=timer - T4:closing

T1:setTimer/timer:= T3:ready[timer==0
‘ start ; alt yl 1N

T9:0opening

T5:buttonInterrupt/timer:=3

»{opening

T7:closeTimer

Slicing FSMs 2011/1/25 15/20

http://tratt.net/laurie/

Amorphous slicing algorithm

Essentials:

1. Mpost < Mpre

2 DG < compute_dependence_graph(CD ger, Mpre)

3. Mpost + traverse_backwards_marking(tsc, Vsc, DG)

4. Mpost < anonymise_unmarked_transitions(Mpost)

5 while apply_rule1(Mpost) or apply_rule2(Mpost)
or apply_rule3(Mpost) do

6: end while

7. apply_epsilon_elimination(Mpost)

8: garbage_collect(Mpost)

9. Stomerge < right_invariant_equivalence(Mpost)

10. merge_states(Siomerge, Mpost)

1. Stomerge < left_invariant_equivalence(Mpost)

12. merge_states(Siomerge: Mpost)

13. return Mpos:

L. Tratt http://tratt.net/laurie/ Slicing FSMs 2011/1/25

http://tratt.net/laurie/

Lift example

T1l:openTimer[timer>0]/timer:=timer-1

T2:waitTimer[timer>0]/timer:=timer - Té4:closing

T1:setTimer/timer: = .. \T3:ready[timer==0
‘ start ; walt vl IS

T7:closeTimer

Slicing FSMs 2011/1/25 17/20

http://tratt.net/laurie/

Lift example

T1l:openTimer[timer>0]/timer:=timer-1

T5:buttonInterrupt/timer:=3

opened/opening
:openmmer::lo

[Start/wait/closing)

T6:fullyClosed

Korel et al.’s slicing algorithm? with NTICD

L. Tratt htty t t. Slicing FSMs 2011/1/25

http://tratt.net/laurie/

Lift example

T5:buttoninterrupt/timer:=3 T8:open/timer:=10

T8:open/timer:=10 .
j—>{opened/opening

T5:buttonInterrupt/timer:=3

start/wait/
closing/closed

T1l:openTimer[timer>0]/timer:=timer-1

SLIM(NTICD)

Slicing FSMs 2011/1/25 17/20

http://tratt.net/laurie/

Lift example

T1l:openTimer[timer>0]/timer:=timer-1

start/wait/closing

SLIM(UNTICD)

L. Tratt htt au Slicing FSMs 2011/1/25

http://tratt.net/laurie/

Relative slice sizes

-10

50

30
20
10

State
NTICD+DD — Transition
—Unique Transition

—

| I I I I I I I I
0 10% 20% 30% 40% 50% 60% 70% 80%

SLIM & Korel et. al’s algorithm? with NTICD

I I
90% 100%

L. Tratt http

Slicing FSMs

2011/1/25

18/20

http://tratt.net/laurie/

Relative slice sizes

157 State
NTSCD+DD — Transition
10 —Unique Transition
5
7
-5

I I I I I I I I I I
0 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

SLIM & Korel et. al’s algorithm? with NTSCD

L. Tratt http /laurie/ Slicing FSMs 2011/1/25 18/20

http://tratt.net/laurie/

Relative slice sizes

-5

UNTICD+DD

State
— Transition
— Unique Transition

F

I
0

I I I I I I I I I I
10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

SLIM & Korel et. al's algorithm? with UNTICD

L. Tratt http

Slicing FSMs 2011/1/25 18/20

http://tratt.net/laurie/

@ The CREST slicing tool.

@ Python tool which can slice SBMs in several different ways.
@ Pluggable control dependency etc.

@ Able to visualize huge SBMs with Graphviz.

@ To appear soonish.

L. Tratt http://tratt.net/laurie/ Slicing FSMs 2011/1/25

http://tratt.net/laurie/

@ Slicing SBMs is useful and not easy.
@ SLIM has pushed the state of the art forward considerably.

@ Ready for real-world in some parts; in others, important questions
to be answered.

L. Tratt http://tratt.net/laurie/ Slicing FSMs 2011/1/25 20/20

http://tratt.net/laurie/

@ Slicing SBMs is useful and not easy.
@ SLIM has pushed the state of the art forward considerably.

@ Ready for real-world in some parts; in others, important questions
to be answered.

Thanks for listening

L. Tratt http://tratt.net/laurie/ Slicing FSMs 2011/1/25 20/20

http://tratt.net/laurie/

	

