UCL

Genetic Mutation Conditioned Amorphous Parametric Hybrid Slicing

Jens Krinke CREST, Department of Computer Science University College London

London, 25/01/2011

What is it? Genetic Mutation Conditioned Amorphous Parametric Hybrid Slicing

Genetic Mutation Conditioned Amorpho

Academic > Genetic Mutation Conditioned Amorphous Parametric Hybrid Slicing

We did not find any result related to "Genetic Mutation Conditioned Amorphous Parametric Hybrid Slicing".

Advanced Search

Search Tips:

Microsoft

- Ensure words are spelled correctly.
- Try rephrasing keywords or using synonyms. E.g. "face detection"
- Try less specific keywords. E.g. "decision tree"
- Make your queries as concise as possible. E.g. "neural network"

What is it? Genetic Mutation Conditioned Amorphous Parametric Hybrid Slicing

Google scholar Genetic Mutation Conditioned Amorphous Search
Scholar Articles excluding patents 🛊 anytime 🛊 include citations 💠 🔀 Create email alert
Evolving transformation sequences using genetic algorithms D Fatiregun, M Harman Source Code Analysis and, 2005 - ieeexplore.ieee.org Amorphous Slicing is a further ap- plication scenario where the source-to-source transforma- tions using single point crossover, a crossover rate of 100% and a mutation rate of 7 We find that perhaps unsurprisingly, the genetic algorithm outperforms both the random search and <u>Cited by 18</u> - <u>Related articles</u> - <u>All 17 versions</u>
A brief survey of program slicing B Xu, J Qian, X Zhang, Z Wu ACM SIGSOFT Software, 2005 - portal.acm.org Conditioned slicing allows a better decomposition of the program giving human readers the possibility In hybrid slicing static information is used to facilitate dynamic slicing or dynamic Harman introduced amorphous slicing which removes the limita- tion to statement deletion as Cited by 86 - Related articles - All 3 versions

Where is Slicing used?

- Debugging: Which statements may have caused a fault?
- Evolution: What is a change's impact?
- Testing: Which tests have to be rerun?

Slicing is easy.

pw

- Slicing is just a traversal of dependences.
- The hard part is the Dependence Analysis!

match=true

First 10 years

79, 81, 82, 84 - Mark Weiser's articles

- 84 Slicing in Dependence Graphs
- 86 Dicing
- 87 Fault Localisation

88 - Dynamic Slicing

88 - Applications: Maintenance, Differencing

88 - Semantics

Busy 10 years

- 91 Quasi-static slicing
- 92 Testing
- 93 Pointers
- 93 Concurrency
- 93 Specifications
- 93 Functional Languages
- 93 Function Extraction
- 94 Chopping

94 - OOP

- 95 Parametric Slicing
- 95 Frank Tip's Survey
- 96 Prolog
- 96 VHDL
- 97 Amorphous Slicing
- 98 Conditioned Slicing
- 98 State Machines

Stable 10 years

- Improvements in precision, efficiency, applications, usability, applicability, ...
- Empirical studies
- Tool(s): CodeSurfer and some prototypes (Kaveri, JSlice, Sprite, Unravel)

CodeSurfer

Two Events

2001: William Griswold's Keynote at PASTE: "Making Slicing Practical:The Final Mile"

2005: Dagstuhl Seminar "Beyond Program Slicing"

Good News!

Most technical problems on Griswold's list have been solved!

But...

Where are the Slicers?

- Program Slicers are still not widely used.
- Program Slicers are not matching the needs of software engineers.
- Slicers are too general and to complex.
- CodeSurfer's use in research: not the tool itself is used, but its infrastructure and its scripting API.

A Tool User

Your tool can solve all sorts of problems for us. But it'll have to analyse our entire I MLOC program, which is written in 4 languages and doesn't compile right now. I want the results as fast as compilation, with an intuitive graphical display linked to the source and integrated into our IDE. I want to save the results, and have them automatically updated as I change the program. By the way, I use Windows and some of my colleagues use Unix. Griswold's Slide in 2001

Challenges (see Wolfgang's talk)

- Distributed applications
- Exhaustive analyses are impossible, source code is not available or compilable.
- Systems programmed in various languages, including scripting and configurations.

Challenges Who solves them?

- Almost no advances in the past 10 years!
- Academic research cannot solve these large scale challenges too expensive.
- Only industrial research can solve them, if a paying client has a specific problem.

Slicing in 2011

- Slicing has been replaced by Dependence Analysis.
- Many new techniques use some kind of dependence traversal adapted to their specific needs.
- Dependence is measured and ranked, binary information is insufficient.

Current Applications Static

• Slicing Models State Machines, UML, etc.

• Security and Information Flow Taint Analysis, Non-Interference

Current Applications Dynamic

- Fault Localization Slicing vs. Tracing
- Impact Analysis Slicing vs. Tracing

Current Trends

- Analyses are neither sound nor complete, optimistic instead of conservative.
- Dynamic Analyses (Tracing)
- Abstract Interpretation
- Symbolic Execution
- Transformation instead of just analysis

Conclusions

- Technical problems to slice simple systems are all solved.
- Complex systems are still a challenge!
- Research is (and should be) task driven
- Dynamic analyses like Tracing are used instead of language-based Slicing.
- Dependence Analysis, not Slicing, is established, often used, and successful.