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Motivation for theoretical analysis of EAs

EAs have many attractive features

I ease of implementation

I applicable in a wide range of domains

I results often competitive with traditional techniques,

but the understanding of how EAs really work is incomplete

I can be highly sensitive to choice of parameter settings

I experimental parameter tuning expensive

I in most cases, run EA and see what happens

I ...



Traditional Investigation of EAs

Run algorithm(s) on \real world" problem instance(s).
Analyse results with some statistical methodology.

How representative are the results?

I Can we make any guarantee about performance?

I What happens on other instances?

I What happens for larger instance sizes?

I What happens for other parameter settings?

How can the results be explained?

I Why does/does not the algorithm work?

I Can the algorithm be improved?

=) Why not attempt the well established methodology
that exists for analysing classical algorithms?
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Evolutionary Algorithms are Algorithms

Criteria for evaluating algorithms

1. Correctness.
I Does the algorithm always give the correct output?

2. Computational Complexity.
I How much computational resources does

the algorithm require to solve the problem?

Same criteria also applicable to search heuristics

1. Correctness.
I Discover global optimum in �nite time?

2. Computational Complexity.
I Time (number of function evaluations)

most relevant computational resource.



Worst Case Computational Complexity

\real world" instance hard instance

runtime

instances

\Real world" runtime: Runtime on \real world" instances

I Are these instances still relevant in 10 years? In 100 years?

Average case runtime: Runtime averaged over instances

I What is an average input (e.g. average FSM)?

Worst case runtime: Runtime on hardest instance

I Strong guarantee about performance of an algorithm.

I Lower bounds obtained by analysing runtime
on speci�c hard problem instance.



Computational Complexity of Search Heuristics
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Prediction of resources needed for a given instance.
Usually runtime as function of instance size.
Number of �tness evaluations before �nding optimum.
I Exponential runtime =) Ine�cient algorithm.
I Polynomial runtime =) \E�cient" algorithm.

Asymptotic notation hides \unimportant" details about
runtime.



Search Heuristic are Randomised Algorithms

E[Tn] f(n)

E[Tn]

f(n)

n
Instance Size

Search heuristics depend on random inputs

I Runtime di�ers between runs.

Expected runtime

I Runtime averaged over possible random inputs.

Success probability

I Probability of �nishing within a speci�ed time f(n).



Research Objectives and Strategy

Runtime analysis of search heuristics on software testing

I Understand behaviour of algorithm

I Runtime impact of operators and parameter settings

I Runtime impact of problem instance characteristics

Research strategy

I Start by analysing simple problems and algorithms

I Proceed with more complex scenarios

I Find appropriate mathematical techniques on the way



Conformance testing and UIOs

Conformance testing involves the state veri�cation problem,
which can be solved using unique input output (UIO)
sequences.
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De�nition
A unique input output sequence

for a state s is a sequence x st.

I 8t 6= s, �(s; x) 6= �(t; x),

where

I �(s; x) is output of FSM
on input x, starting in state s.

Example

I 1 is a UIO for state s3.

I 1 is not a UIO for state s1.

UIO(x) := jft 2 S j �(s; x) 6= �(t; x)gj



Previous work

UIOs are fundamental in conformance testing of FSMs.

I Used to solve the state veri�cation problem.

Theoretical aspects

I NP-hard to check whether a state has a UIO
[Lee and Yannakakis, 1994].

I Shortest UIOs can be exponentially long
(empirical results suggest they are often short).

Experimental comparison between random search and GA
[Guo et al., 2004] and [Derderian et al., 2006]

I Min. length, max. number of di�erent outputs.

I Similar performance on small FSMs.

I GA better than random search on larger FSMs,
especially when long UIOs are needed



(1+1) Evolutionary Algorithm

(1+1) EA

Choose x uniformly from f0; 1gn:
Repeat

x0 := x.
Flip each bit of x0 with probability 1=n.
If f(x0) � f(x),

then x := x0.



Hard instance class - FSM Combination Lock

Theorem
On the instance class below

I The prob. that (1+1) EA (or RS) �nds the UIO for

state s1 within ec�n iterations is exponentially small.

s1 s2 s3 sn�1 sn0=a

0=a 0=a 0=b
1=a 1=a 1=a 1=a

1=a

n

Proof idea for (1+1) EA:

I All states \collapse" into s1 on input 0.
I Problem instance is a \needle in the haystack".
I Success probability bounded by drift analysis.

[Lehre and Yao, 2007]



Easy instance class - FSM Counter

Theorem
On the instance class below,

I (1+1) EA �nds the UIO for s1 in exp. time O(n log n).

I The prob. that random search �nds a UIO for s1
within ec�n iterations is exponentially small e�
(n).

s1 s2 s3 sn�1 sn

0=a 0=a 0=a 0=a

1=a 1=a 1=a 1=a

1=b

n

Proof idea: The problem instance is essentially OneMax.
[Lehre and Yao, 2007]



Instances with tunable di�culty

Theorem
On the instance class below, with k � 2 any constant,

I (1+1) EA �nds an UIO for s1 in expected time �(nk).

s1

q1 q2 q3 qk qk+1 qk+2 qm�1 qm
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1=b

0=b0=b0=b0=b0=b0=b
1=a 1=a 1=a 1=a 1=a 1=a 1=a

0=b 0=b 0=b 0=b1=a
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k

m = n� k � 1

[Lehre and Yao, 2007]



Tunable Di�culty - Proof Idea.
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Steady State GA with Crossover

(�+1) SSGA

Sample a population P of � points u.a.r. from f0; 1gn.
repeat

with probability pc(n),
Sample x and y u.a.r. from P .
(x0; y0) := one point crossover(x; y).
if maxff(x0); f(y0)g � maxff(x); f(y)g

then x := x0 and y := y0.
otherwise

Sample x u.a.r. from P .
x0 := Mutate(x).
if f(x0) � f(x)

then x := x0.

[Oliveto et al., 2008]



E�ect of Crossover

Theorem
On the instance class below,

I (�+1) SSGA with constant crossover prob. pc > 0
�nds the UIO for state s1 in c�2n2 generations with

probability 1� e�
(n) � e�
(�).

I (�+1) SSGA without crossover, i.e. pc = 0,
does not �nd the UIO for state s1 in time 2cn

with probability 1� e�
(n).
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[Lehre and Yao, 2008]



Proof Idea

TwoPaths (x) :=

(
2n if x = 1(1��)�n0��n;

Lo(x) + Lz(x) otherwise.

x* y*

Global Optimum
I Global optimum between two paths.

I Monotonic �tness along lineages.

I Lineages reach a local optimum in

O(n2� log�=(1� pc)):

I Population divided evenly between paths

I Once on local optima, successful crossover in

O(n=pc):



Branch Coverage of Triangle Classi�cation

int tri_type(int x, int y, int z) {

int type;

int a=x, b=y, c=z;

if (x > y) {

int t = a; a = b; b = t;

}

if (a > z) { int t = a; a = c; c = t; }

if (b > c) { int t = b; b = c; c = t; }

if (a + b <= c) {

type = NOT_A_TRIANGLE;

} else {

type = SCALENE;

if (a == b && b == c) {

type = EQUILATERAL;

} else if (a == b || b == c) {

type = ISOSCELES;

}

}

return type;

}

[McMinn, 2004]

I Testing problem

I Find x; y; z such that
equilateral branch is covered.

I Fitness functions

I approach level
I branch distance

I Problem size

I range of integer variables
x; y; z 2 f�N=2 + 1; :::; N=2g.



Fitness Functions (minimisation)

McMinn (2004)

Approach level

I Minimal distance to branch
in control ow graph.

Branch Distance

(Approach level,f(curr. predicate))

Predicate f

if (a>b) b� a
if (a>=b) b� a
if (a<b) a� b
if (a<=b) a� b
if (a==b) jb� aj
if (a!=b) �jb� aj



Expected runtimes on Equilateral Branch

Algorithms

I RS - Random Search

I HC - Hill Climber (local search)

I AVM - Alternating Variable Method

I (1+1) EA (with unsigned binary integer repr.)

Expected Runtimes

Algorithm Approach level Branch distance
RS �(N2) �(N2)
HC �(N2) �(N)
AVM �(N2) 
(logN) and O((logN)2)
(1+1) EA1 �((logN)5)

[Arcuri et al., 2008]
1Ongoing work.



Conclusion

Runtime of EAs on UIO problem

I (1+1) EA has exponential worst case runtime

I (1+1) EA still e�cient on many instances,
and outperforms a random search strategy.

I spectrum of increasingly hard instances for (1+1) EA.

I crossover and large population essential on certain
instances.

Runtime on branch coverage of triangle classi�cation

I AVM � (1+1) EA � HC � RS.

I Theoretically con�rmed well known results.



Future Work

Research Questions

I Relationships between problems and heuristics.

I Analysis of other meta-heuristics.

I Analysis of broader problem classes.

I Approximation quality of search heuristics.

Methodology

I Improve mathematical techniques.



Analysis of Other Meta-Heuristics

I Analysis of (1+1) EA necessary to develop techniques

I Lower bounds for population-based EAs

I Estimation of Distribution Algorithms (EDAs)

I Multi-objective EAs



Analysis of Broader Problem Classes

I Know speci�c instance classes that are easy and hard.

I Which conditions on the instance are su�cient to
guarantee polynomial runtime?
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