
When Is a Meta-heuristic Approach
E�cient in Search-Based Software

Engineering

Xin Yao

CERCIA, University of Birmingham, UK

The 1st CREST Open Workshop / SEBASE Workshop
November 24th-25th, 2009

Motivation for theoretical analysis of EAs

EAs have many attractive features

I ease of implementation

I applicable in a wide range of domains

I results often competitive with traditional techniques,

but the understanding of how EAs really work is incomplete

I can be highly sensitive to choice of parameter settings

I experimental parameter tuning expensive

I in most cases, run EA and see what happens

I ...

Traditional Investigation of EAs

Run algorithm(s) on \real world" problem instance(s).
Analyse results with some statistical methodology.

How representative are the results?

I Can we make any guarantee about performance?

I What happens on other instances?

I What happens for larger instance sizes?

I What happens for other parameter settings?

How can the results be explained?

I Why does/does not the algorithm work?

I Can the algorithm be improved?

=) Why not attempt the well established methodology
that exists for analysing classical algorithms?

Outline

Introduction
Runtime Analysis of Evolutionary Algorithms

Conformance Testing of FSMs
FSMs and Unique Input Output Sequences
Hard and easy instance classes for (1+1) EA
Crossover can be constructive on the UIO problem

Branch Coverage Testing
Triangle Classi�cation

Conclusion

Evolutionary Algorithms are Algorithms

Criteria for evaluating algorithms

1. Correctness.
I Does the algorithm always give the correct output?

2. Computational Complexity.
I How much computational resources does

the algorithm require to solve the problem?

Same criteria also applicable to search heuristics

1. Correctness.
I Discover global optimum in �nite time?

2. Computational Complexity.
I Time (number of function evaluations)

most relevant computational resource.

Worst Case Computational Complexity

\real world" instance hard instance

runtime

instances

\Real world" runtime: Runtime on \real world" instances

I Are these instances still relevant in 10 years? In 100 years?

Average case runtime: Runtime averaged over instances

I What is an average input (e.g. average FSM)?

Worst case runtime: Runtime on hardest instance

I Strong guarantee about performance of an algorithm.

I Lower bounds obtained by analysing runtime
on speci�c hard problem instance.

Computational Complexity of Search Heuristics

0 50 100

0
10

00
0

Instance Size

R
un

tim
e

Prediction of resources needed for a given instance.
Usually runtime as function of instance size.
Number of �tness evaluations before �nding optimum.
I Exponential runtime =) Ine�cient algorithm.
I Polynomial runtime =) \E�cient" algorithm.

Asymptotic notation hides \unimportant" details about
runtime.

Search Heuristic are Randomised Algorithms

E[Tn] f(n)

E[Tn]

f(n)

n
Instance Size

Search heuristics depend on random inputs

I Runtime di�ers between runs.

Expected runtime

I Runtime averaged over possible random inputs.

Success probability

I Probability of �nishing within a speci�ed time f(n).

Research Objectives and Strategy

Runtime analysis of search heuristics on software testing

I Understand behaviour of algorithm

I Runtime impact of operators and parameter settings

I Runtime impact of problem instance characteristics

Research strategy

I Start by analysing simple problems and algorithms

I Proceed with more complex scenarios

I Find appropriate mathematical techniques on the way

Conformance testing and UIOs

Conformance testing involves the state veri�cation problem,
which can be solved using unique input output (UIO)
sequences.

s3

s4

s2 s1

1=a

0=b 0=b

1=b

0=b

0=a

1=b1=b

De�nition
A unique input output sequence

for a state s is a sequence x st.

I 8t 6= s, �(s; x) 6= �(t; x),

where

I �(s; x) is output of FSM
on input x, starting in state s.

Example

I 1 is a UIO for state s3.

I 1 is not a UIO for state s1.

UIO(x) := jft 2 S j �(s; x) 6= �(t; x)gj

Previous work

UIOs are fundamental in conformance testing of FSMs.

I Used to solve the state veri�cation problem.

Theoretical aspects

I NP-hard to check whether a state has a UIO
[Lee and Yannakakis, 1994].

I Shortest UIOs can be exponentially long
(empirical results suggest they are often short).

Experimental comparison between random search and GA
[Guo et al., 2004] and [Derderian et al., 2006]

I Min. length, max. number of di�erent outputs.

I Similar performance on small FSMs.

I GA better than random search on larger FSMs,
especially when long UIOs are needed

(1+1) Evolutionary Algorithm

(1+1) EA

Choose x uniformly from f0; 1gn:
Repeat

x0 := x.
Flip each bit of x0 with probability 1=n.
If f(x0) � f(x),

then x := x0.

Hard instance class - FSM Combination Lock

Theorem
On the instance class below

I The prob. that (1+1) EA (or RS) �nds the UIO for

state s1 within ec�n iterations is exponentially small.

s1 s2 s3 sn�1 sn0=a

0=a 0=a 0=b
1=a 1=a 1=a 1=a

1=a

n

Proof idea for (1+1) EA:

I All states \collapse" into s1 on input 0.
I Problem instance is a \needle in the haystack".
I Success probability bounded by drift analysis.

[Lehre and Yao, 2007]

Easy instance class - FSM Counter

Theorem
On the instance class below,

I (1+1) EA �nds the UIO for s1 in exp. time O(n log n).

I The prob. that random search �nds a UIO for s1
within ec�n iterations is exponentially small e�
(n).

s1 s2 s3 sn�1 sn

0=a 0=a 0=a 0=a

1=a 1=a 1=a 1=a

1=b

n

Proof idea: The problem instance is essentially OneMax.
[Lehre and Yao, 2007]

Instances with tunable di�culty

Theorem
On the instance class below, with k � 2 any constant,

I (1+1) EA �nds an UIO for s1 in expected time �(nk).

s1

q1 q2 q3 qk qk+1 qk+2 qm�1 qm

r1 r2 rk�1 rk0=b

1=b

0=b0=b0=b0=b0=b0=b
1=a 1=a 1=a 1=a 1=a 1=a 1=a

0=b 0=b 0=b 0=b1=a

1=a1=a1=a

k

m = n� k � 1

[Lehre and Yao, 2007]

Tunable Di�culty - Proof Idea.

10k1n�2k�2*** n� 11n�k�1***

1n�k�20***

12k+30***

12k+20***

110*****

10******

0*******0

1

2

2k + 2

2k + 3

n� k � 2

n� k � 1

1

1

1

1

k

Search points
without 1n�2k�2

in su�x.

F

� 2k + 3

Non-trivial
to calculate
exact �tness.

� 2k + 2

Search points
with 1n�2k�2

in su�x.

Pr [F] = e�
(n)

E
�
T j F

�
= �(nk)

E [T j F] = O(n2k+3)

E
�
T j F

�
=
(nk)

E [T] = (1�Pr [F]) �E
�
T j F

�
+Pr [F] �E [T j F] = �(nk):

Steady State GA with Crossover

(�+1) SSGA

Sample a population P of � points u.a.r. from f0; 1gn.
repeat

with probability pc(n),
Sample x and y u.a.r. from P .
(x0; y0) := one point crossover(x; y).
if maxff(x0); f(y0)g � maxff(x); f(y)g

then x := x0 and y := y0.
otherwise

Sample x u.a.r. from P .
x0 := Mutate(x).
if f(x0) � f(x)

then x := x0.

[Oliveto et al., 2008]

E�ect of Crossover

Theorem
On the instance class below,

I (�+1) SSGA with constant crossover prob. pc > 0
�nds the UIO for state s1 in c�2n2 generations with

probability 1� e�
(n) � e�
(�).

I (�+1) SSGA without crossover, i.e. pc = 0,
does not �nd the UIO for state s1 in time 2cn

with probability 1� e�
(n).

s1

0=a 0=a 0=a 0=a 0=a 0=a 0=a 0=a

1=a1=a1=a1=a1=a1=a1=a1=a

0=a 0=a 0=a 0=a 0=a 0=a 0=a

1=a1=a1=a1=a1=a1=a1=a1=a

0=a
1=b

0=c1=a 0=a

(1� �) � n+ 1 � � n

� � n+ 1 (1� �) � n

[Lehre and Yao, 2008]

Proof Idea

TwoPaths (x) :=

(
2n if x = 1(1��)�n0��n;

Lo(x) + Lz(x) otherwise.

x* y*

Global Optimum
I Global optimum between two paths.

I Monotonic �tness along lineages.

I Lineages reach a local optimum in

O(n2� log�=(1� pc)):

I Population divided evenly between paths

I Once on local optima, successful crossover in

O(n=pc):

Branch Coverage of Triangle Classi�cation

int tri_type(int x, int y, int z) {

int type;

int a=x, b=y, c=z;

if (x > y) {

int t = a; a = b; b = t;

}

if (a > z) { int t = a; a = c; c = t; }

if (b > c) { int t = b; b = c; c = t; }

if (a + b <= c) {

type = NOT_A_TRIANGLE;

} else {

type = SCALENE;

if (a == b && b == c) {

type = EQUILATERAL;

} else if (a == b || b == c) {

type = ISOSCELES;

}

}

return type;

}

[McMinn, 2004]

I Testing problem

I Find x; y; z such that
equilateral branch is covered.

I Fitness functions

I approach level
I branch distance

I Problem size

I range of integer variables
x; y; z 2 f�N=2 + 1; :::; N=2g.

Fitness Functions (minimisation)

McMinn (2004)

Approach level

I Minimal distance to branch
in control ow graph.

Branch Distance

(Approach level,f(curr. predicate))

Predicate f

if (a>b) b� a
if (a>=b) b� a
if (a<b) a� b
if (a<=b) a� b
if (a==b) jb� aj
if (a!=b) �jb� aj

Expected runtimes on Equilateral Branch

Algorithms

I RS - Random Search

I HC - Hill Climber (local search)

I AVM - Alternating Variable Method

I (1+1) EA (with unsigned binary integer repr.)

Expected Runtimes

Algorithm Approach level Branch distance
RS �(N2) �(N2)
HC �(N2) �(N)
AVM �(N2)
(logN) and O((logN)2)
(1+1) EA1 �((logN)5)

[Arcuri et al., 2008]
1Ongoing work.

Conclusion

Runtime of EAs on UIO problem

I (1+1) EA has exponential worst case runtime

I (1+1) EA still e�cient on many instances,
and outperforms a random search strategy.

I spectrum of increasingly hard instances for (1+1) EA.

I crossover and large population essential on certain
instances.

Runtime on branch coverage of triangle classi�cation

I AVM � (1+1) EA � HC � RS.

I Theoretically con�rmed well known results.

Future Work

Research Questions

I Relationships between problems and heuristics.

I Analysis of other meta-heuristics.

I Analysis of broader problem classes.

I Approximation quality of search heuristics.

Methodology

I Improve mathematical techniques.

Analysis of Other Meta-Heuristics

I Analysis of (1+1) EA necessary to develop techniques

I Lower bounds for population-based EAs

I Estimation of Distribution Algorithms (EDAs)

I Multi-objective EAs

Analysis of Broader Problem Classes

I Know speci�c instance classes that are easy and hard.

I Which conditions on the instance are su�cient to
guarantee polynomial runtime?

Thank you for your attention!

Arcuri, A., Lehre, P. K., and Yao, X. (2008).

Theoretical runtime analyses of search algorithms on the test
data generation for the triangle classi�cation problem.

In In Proceedings of the 1st International Workshop on
Search-Based Software Testing.

Lehre, P. K. and Yao, X. (2008).

Crossover can be constructive when computing unique input
output sequences.

In Proceedings of the 7th International Conference on
Simulated Evolution and Learning (SEAL'2008).

Lehre, P. K. and Yao, X. (2007).

Runtime analysis of (1+1) EA on computing unique input
output sequences.

In Proceedings of 2007 IEEE Congress on Evolutionary
Computation (CEC'07), pages 1882{1889.

References I

Arcuri, A., Lehre, P. K., and Yao, X. (2008).

Theoretical runtime analyses of search algorithms on the test data
generation for the triangle classi�cation problem.

In ICSTW '08: Proceedings of the 2008 IEEE International Conference
on Software Testing Veri�cation and Validation Workshop, pages
161{169, Washington, DC, USA. IEEE Computer Society.

Derderian, K. A., Hierons, R. M., Harman, M., and Guo, Q. (2006).

Automated unique input output sequence generation for conformance
testing of fsms.

The Computer Journal, 49(3):331{344.

Guo, Q., Hierons, R. M., Harman, M., and Derderian, K. A. (2004).

Computing unique input/output sequences using genetic algorithms.

In Proceedings of the 3rd International Workshop on Formal
Approaches to Testing of Software (FATES'2003), volume 2931 of
LNCS, pages 164{177.

References II

Lee, D. and Yannakakis, M. (1994).

Testing �nite-state machines: state identi�cation and veri�cation.

IEEE Transactions on Computers, 43(3):306{320.

Lehre, P. K. and Yao, X. (2007).

Runtime analysis of (1+1) EA on computing unique input output
sequences.

In Proceedings of 2007 IEEE Congress on Evolutionary Computation
(CEC'2007), pages 1882{1889. IEEE Press.

Lehre, P. K. and Yao, X. (2008).

Crossover can be constructive when computing unique input output
sequences.

In Proceedings of the 7th International Conference on Simulated
Evolution and Learning (SEAL'2008), pages 595{604, Berlin,
Heidelberg. Springer-Verlag.

References III

McMinn, P. (2004).

Search-based software test data generation: A survey.

Software Testing, Veri�cation and Reliability, 14(2):105{156.

Oliveto, P. S., He, J., and Yao, X. (2008).

Analysis of population-based evolutionary algorithms for the vertex
cover problem.

In Proceedings of IEEE World Congress on Computational Intelligence
(WCCI'2008), Hong Kong, June 1-6, 2008, pages 1563{1570.

	Introduction
	Runtime Analysis of Evolutionary Algorithms

	Conformance Testing of FSMs
	FSMs and Unique Input Output Sequences
	Hard and easy instance classes for (1+1) EA
	Crossover can be constructive on the UIO problem

	Branch Coverage Testing
	Triangle Classification

	Conclusion

