
Estimating Path Execution Frequency
Statically

Ray Buse
Wes Weimer

THE ROAD NOT
TAKEN

2

The Big Idea

 Developers often have a expectations about
common and uncommon cases in programs

 The structure of code they write can
sometimes reveal these expectations

3

Example

public V function(K k , V v)
{
 if (v == null)
 throw new Exception();

 if (c == x)
 r();

 i = k.h();

 t[i] = new E(k, v);
 c++;

 return v;
}

4

Example

public V function(K k , V v)
{
 if (v == null)
 throw new Exception();

 if (c == x)
 restructure();

 i = k.h();

 t[i] = new E(k, v);
 c++;

 return v;
}

Exception

Invocation that changes
a lot of the object state

Some
computation

5

Path 1

public V function(K k , V v)
{
 if (v == null)
 throw new Exception();

 if (c == x)
 restructure();

 i = k.h();

 t[i] = new E(k, v);
 c++;

 return v;
}

6

public V function(K k , V v)
{
 if (v == null)
 throw new Exception();

 if (c == x)
 restructure();

 i = k.h();

 t[i] = new E(k, v);
 c++;

 return v;
}

Path 2

7

Path 3

public V function(K k , V v)
{
 if (v == null)
 throw new Exception();

 if (c == x)
 restructure();

 i = k.h();

 t[i] = new E(k, v);
 c++;

 return v;
}

8

HashTable: put

public V put(K key , V value)
{
 if (value == null)
 throw new Exception();

 if (count >= threshold)
 rehash();

 index = key.hashCode() % length;

 table[index] = new Entry(key, value);
 count++;

 return value;
}

*simplified from java.util.HashTable jdk6.0

9

Intuition

How a path modifies program state may
correlate with its runtime execution
frequency

 Paths that change a lot of state are rare
 Exceptions, initialization code, recovery code,

etc.
 Common paths tend to change a small

amount of state

Stack State +
Heap State

10

More Intuition

 Number of branches
 Number of method invocations
 Path length
 Percentage of statements in a method

executed
 …

11

Hypothesis

We can accurately predict the runtime
frequency of program paths by analyzing
their static surface features

Goals:
 Know what programs are likely to do without

having to run them (Produce a static profile)
 Understand the factors that are predictive of

execution frequency

12

Our Path

 Intuition
 Candidates for static profiles
 Our approach

 a descriptive model of path
frequency

 Some Experimental Results

13

Applications for Static Profiles

 Indicative (dynamic) profiles are often hard
to get

Profile information can improve many analyses
 Profile guided optimization
 Complexity/Runtime estimation
 Anomaly detection
 Significance of difference between program

versions
 Prioritizing output from other static analyses

14

Approach

 Model path with a set of features
that may correlate with runtime
path frequency

 Learn from programs for which we
have indicative workloads

 Predict which paths are most or
 least likely in other programs

15

Experimental Components

 Path Frequency Counter
 Input: Program, Input
 Output: List of paths + frequency count for each

 Descriptive Path Model
 Classifier

16

Our Definition of Path

 Statically enumerating full program paths
doesn't scale

 Choosing only intra-method paths doesn't give
us enough information

 Compromise: Acyclic Intra-Class Paths
 Follow execution from public method entry point

until return from class
 Don’t follow back edges

17

Experimental Components

 Path Frequency Counter
 Input: Program, Input
 Output: List of paths + frequency count for each

 Descriptive Path Model
 Input: Path
 Output: Feature Vector describing the path

 Classifier

18

Count Coverage Feature
• pointer comparisons
• new

• this

• all variables
• assignments
• dereferences
• • fields
• • fields written
• • statements in invoked method
• goto stmts
• if stmts
• local invocations
• • local variables
• non-local invocations
• • parameters
• return stmts
• statements
• throw stmts

19

Experimental Components

 Path Frequency Counter
 Input: Program, Input
 Output: List of paths + frequency count for each

 Descriptive Path Model
 Input: Path
 Output: Feature Vector describing the path

 Classifier
 Input: Feature Vector
 Output: Frequency Estimate

20

Classifier: Logistic Regression

 Learn a logistic function to estimate
the runtime frequency of a path

Likely to
be
taken

Not likely
to be
taken

Input path {x1, x2 … xn}

21

Model Evaluation

 Use the model to rank all static paths in the
program

 Measure how much of total program runtime
is spent:
 On the top X paths for each method
 On the top X% of all paths

 Also, compare to static branch predictors
 Cross validation on Spec JVM98 Benchmarks

 When evaluating on one, train on the others

22

Spec JVM 98 Benchmarks
Name Description LOC Methods Paths Paths/

Method
Runtime

check
check VM
features

1627 107 1269 11.9 4.2s

compress compression 778 44 491 11.2 2.91s

db
data
management

779 34 807 23.7 2.8s

jack
parser
generator

7329 304 8692 28.6 16.9s

javac compiler 56645 1183 13136 11.1 21.4s

jess
expert
system shell

8885 44 147 3.3 3.12s

mtrt ray tracer 3295 174 1573 9.04 6.17s

Total or
Average

79338 1620 26131 12.6 59s

23

Evaluation: Top Paths

Choose 5% of all
paths and get 50%

of runtime
behavior

Choose 1 path per
method and get
94% of runtime

behavior

24

Static Branch Prediction

At each branching node…
 Partition the path set

entering the node into
two sets corresponding to
the paths that conform to
each side of the branch.

 Record the prediction for
that branch to be the side
with the highest
frequency path available.

a=b

c=d

if (a<c)

e=f g=h

Given where we’ve
been, which

branch represents
the highest

frequency path?

25

Evaluation: Static Branch
Predictor

We are even a
reasonable choice
for static branch

prediction
Branch Taken;
Forward Not

Taken

A set of
heuristics

Always choose the
higher frequency

path

26

Model Analysis: Feature Power

Exceptions are
predictive but rare

Many
features

“tie”

Path length matters
most

More assignment
statements → lower

frequency

27

Conclusion

A formal model that statically predicts relative
dynamic path execution frequencies

A generic tool (built using that model) that
takes only the program source code (or
bytecode) as input and produces
 for each method, an ordered list of paths

through that method

The promise of helping other program analyses
and transformations

28

Questions? Comments?

29

Evaluation by Benchmark

1.0 =
perfect

0.67 = return
all or
 return
nothing

