
CIGPU 2010
Computational Intelligence on Consumer

Games and Graphics Hardware

http://www.cs.ucl.ac.uk/external/W.Langdon/cigpu/

IEEE WCCI-2010 Special Session

Barcelona 18-23 July 2010

Submissions 31 January 2010

http://www.cs.ucl.ac.uk/external/W.Langdon/cigpu/
http://www.wcci2010.org/index.php?option=com_content&view=article&id=31&Itemid=13

A Many Threaded CUDA Interpreter

for Genetic Programming

W. B. Langdon

CREST lab,

Department of Computer Science

http://www.dcs.kcl.ac.uk/staff/W.Langdon/

3

Introduction

• General Purpose use of GPU (GPGPU) and

why we care

• Genetic Programming (GP).

• Running many programs on graphics

hardware designed for a single program

operating on many data in parallel (SIMD).

• Simultaneously running ¼ million programs

• Actual speed 215 billion GP ops /second

• Lessons

W. B. Langdon, King's London

Why Interest in Graphics Cards

• Speed

– 800 0.8Ghz CPUs

– Even with multi-threading

off-chip memory bottleneck

means difficult to keep

CPUs busy

• Future speed

– Faster than Moore’s law

– nVidia and AMD/ATI claim

doubling 12months

4W. B. Langdon, King's London

5

Genetic Programming
• A population of randomly created programs

– whose fitness is determined by running them

– Better programs are selected to be parents

– New generation of programs are created by
randomly combining above average parents or by
mutation.

– Repeat generations until solution found.

Tree (A-10)*B

http://www.gp-field-guide.org.uk/

6

General Purpose GPU Software Options

• Microsoft Research windows/DirectX [2007]

• BrookGPU stanford.edu

• GPU specific assemblers

• nVidia CUDA [EuroGP 2008]

• nVidia Cg [GECCO 2007]

• PeakStream

• Sh no longer active. Replaced by RapidMind
[EuroGP 2008]

• OpenCL

Most software aimed at graphics. Interest in using

them (and CELL processors, XBox, PS3, game

consoles) for general purpose computing.

http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/langdon_2008_eurogp.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/langdon_2008_eurogp.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/langdon_2008_eurogp.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/langdon_2008_eurogp.html

7

Missing, Future GPGPU

• Untimely death of tools.
– Tools no longer supported

– Tools superceeded or become more commercial

– Hardware rapid turn over

• The “other” GPU manufacturer AMD/ATI

• OpenCL

• Complete GP on GPU (small gain?)

• Applications with fitness evaluation on GPU

• Improved debug and performance monitoring

7W. B. Langdon, King's London

8

nVidia G80 Hardware

• Connection to host PC computer

• Memory heirarchy

– On chip: Registers, shared, constants

– Off chip: Global and “local”

• Scheduling threads

• How many threads?

W. B. Langdon, King's London

early nVidia t10p Tesla

192 Stream Processors

Clock 1.08 GHz <Tflop (max!)

1 GByte

9W. B. Langdon, King's London

Available 240 1.5GHz

4 together 16 GBytes

10½ 4⅜ inches

Tesla chip connections

Linux

PC

Memory, GPU chip, etc. All on one card

10W. B. Langdon, King's London

CUDA data memory heirarchy
Linux PC

Each stream processor has its own registers

24 SP share 16k. Read/write contention

delays threads.

64k can be read by all 8 (10) blocks of SP

without contention delays.

Both CUDA “local” and “global” variables are

off chip. Latency hundred times more than on

chip. Must have thousands of threads to keep

SP busy.

Programmer responsible for dividing memory

between threads and syncronisation.

Role of caches unclear.

11

Mega Threading

Each block of 24 stream processors runs up to 24 threads of the same program.

Each thread executes the same instruction.

When program branches, some threads advance and others are held. Later the

other branches are run to catch up.

If thread is blocked waiting for off chip memory another set of threads can be

started.

New threads could be from another program.

13

Performance v threads

Speed

(log scale)

Threads (log scale)

W. B. Langdon, King's London 14

Performance v threads 2

• Graph emphasises the importance of using

many threads (minimum 4000).

• When a thread stalls because of waiting for off

chip memory another thread is automatically

scheduled if ready. Thus access to GPU’s main

memory bottle neck can be over come.

• At least 20 threads per stream processor

– 57 10
9

GP op/sec with 12 threads per SP

– 88 10
9

GP op/sec with 15 threads per SP

15

Experiments

• Interprets 121 billion GP primitives per

second (215 sustained peak)

• How?

– each integer contains 32 Booleans

– randomised test case selection

– simple CUDA reverse polish interpreter

• 20 mux solved

• 37 mux solved. 137 billion test cases

W. B. Langdon, King's London

Boolean Multiplexor

d = 2
a

n = a + d

Num test cases = 2
n

20-mux 1 million test cases

37-mux 137 10
9

tests

17

Submachine Code GP

• int contains 32 bits. Treat each as Boolean.

• 32 Boolean (and or, nor, if, not etc) done

simultaneously.

• Load 32 test cases

– D0 = 01010101…

– D1 = 00110011…

– DN = 00000000… or 11111111…

• Check 32 answers simultaneously

• CPU speed up 24 fold (32) 60 fold (64 bits)

W. B. Langdon, King's London

18

Randomised Samples

• 20-mux 2048 of 1 million (2 10
-6

)

• 37-mux 8192 of 137 billion (6 10
-9

)

• Same tests for all four programs in each

selection tournament

• New tests for new generation and each

tournament

• (Statistical significance test not needed)

W. B. Langdon, King's London

19

Single Instruction Multiple Data

• GPU designed for graphics

• Same operation done on many

objects

– Eg appearance of many triangles,

different shapes, orientations,

distances, surfaces

– One program, many data → Simple

(fast) parallel data streams

• How to run many programs on

SIMD computer?

Interpreting many programs

simultaneously

• Can compile GP for
GPU on host PC.
Then run one
program on multiple
data (training cases).

• Avoid compilation by
interpreting tree

• Run single SIMD
interpreter on GPU on
many trees.

• Better interpret a few
trees many test cases

21

GPU Genetic Programming Interpreter
• Programs wait for the interpreter to

offer an instruction they need

evaluating.

• For example an addition.

– When the interpreter wants to do an

addition, everyone in the whole population

who is waiting for addition is evaluated.

– The operation is ignored by everyone else.

– They then individually wait for their next

instruction.

• The interpreter moves on to its next

operation.

• The interpreter runs round its loop

until the whole population has been

interpreted.

22

• Data is pushed onto stack before operations pop
them (i.e. reverse polish. x+y →)

• The tree is stored as linear expression in reverse
polish.

• Same structure on host as GPU.
– Avoid explicit format conversion when population is

loaded onto GPU.

• Genetic operations act on reverse polish:
– random tree generation (eg ramped-half-and-half)

– subtree crossover

– 2 types of mutation

• Requires only one byte per leaf or function.
– So large populations (millions of individuals) are

possible.

Representing the Population

23

Reverse Polish Interpreter

(A-10) B ≡ A 10 - B

Variable: push onto stack

Function pop arguments, do operation, push result

1 stack per program. All stacks in shared memory.

23

RPN interpreter
int SP = 0;

for(unsigned int PC = 0;; PC++){

Read opcode from global/constant

if(opcode==OPNOP) break;

if(type==leaf) push(trainingdata); // 32 bits

else { //function

const unsigned int sp1 = stack(SP-1);

const unsigned int sp2 = stack(SP-2);

SP -= 2;

switch(opcode) {

case OPAND: push(AND(sp1,sp2)); break;

case OPOR: push(OR(sp1,sp2)); break;

case OPNAND: push(~AND(sp1,sp2)); break;

case OPNOR: push(~OR(sp1,sp2)); break;

}}}

W. B. Langdon, King's London 25

Validation

• Solutions run on all test cases in GPU.

• Evolved 20-mux and 37-mux expressions

converted to C code, compiled and run

against all tests

26

Performance v Test v Threads

W. B. Langdon, King's London

27

Performance v RPN size

W. B. Langdon, King's London

W. B. Langdon, King's London 28

Performance

• nVidia early engineering sample (192 SP)

• 121 109 GP operations/second (peak 215)

• In validation step get big improvement

(160 109 → 215 109 GPops) by using

“constant” memory

• 100 times [CIGPU 2008]
• hardware similar nVidia GeForce 8800 GTX (128 SP)

http://dx.doi.org/doi:10.1109/CEC.2008.4631364

29

Lessons
• Computation is cheap. Data is expensive.

• Suggest interpreting GP trees on the GPU is
dominated by leafs:
– since there are lots of them and typically they require

data transfers across the GPU.

– adding more functions will slow interpreter less than
might have been expected.

• To get the best of the GPU it needs to be given
large chunks of work to do:
– Aim for at least one second

– GeForce: more than 10 seconds and Linux dies
• Solved by not using GPU as main video interface??

– Less than 1millisec Linux task switching dominates

• Poor debug, performance tools

Discussion
• Interpreter faster than compiled GP

– However using modest number of test cases (8192)

• 32/64-bit suitable for Boolean problems. Also

used in regression problems (8 bit resolution),

graphics and optical character recognition (OCR)

• Speed up due to 32bits and CUDA

• Main bottle neck is access to GPU’s main

memory. But GP pop allows many threads.

• No on-chip local arrays; stack in shared memory

– Limits number of threads to 256.

30

Conclusions

• GPU offers huge power on your desk

• Interpreted genetic programming (GP) can
effectively use graphics cards and Tesla

• 121 billion GP operations per second (0.8
at CIGPU-2008)

• Tesla first to solve two GP benchmarks

– 20 mux solved (<1 hour v. >4 years)

– 37 mux solved. 137 billion test cases. <1day

Technical report TR-09-05W. B. Langdon, King's London

http://www.dcs.kcl.ac.uk/technical-reports/papers/TR-09-05.pdf
http://www.dcs.kcl.ac.uk/technical-reports/papers/TR-09-05.pdf
http://www.dcs.kcl.ac.uk/technical-reports/papers/TR-09-05.pdf
http://www.dcs.kcl.ac.uk/technical-reports/papers/TR-09-05.pdf
http://www.dcs.kcl.ac.uk/technical-reports/papers/TR-09-05.pdf

3232

END

W. B. Langdon, King's London

CIGPU 2010
Computational Intelligence on Consumer

Games and Graphics Hardware

http://www.cs.ucl.ac.uk/external/W.Langdon/cigpu/

IEEE WCCI-2010 Special Session

Barcelona 18-23 July 2010

Submissions 31 January 2010

33W. B. Langdon, King's London

http://www.cs.ucl.ac.uk/external/W.Langdon/cigpu/
http://www.wcci2010.org/index.php?option=com_content&view=article&id=31&Itemid=13

• Code via ftp

– http://www.cs.ucl.ac.uk/staff/W.Langdon

/ftp/gp-code/gp32cuda.tar.gz
– gpu_gp_2.tar.gz wbl_gecco2004lb_protein.tar.gz gpu_park-

miller.tar.gz

• Movies of evolving populations

– Evolving π
http://www.cs.ucl.ac.uk/staff/W.Langdon/pi_movie.gif
http://www.cs.ucl.ac.uk/staff/W.Langdon/pi2_movie.html

– Evolving Protein Prediction Pop=Million 1000gens
http://www.cs.mun.ca/~blangdon/gpu_gp_slides/nuclear.gif

• gpgpu.org GPgpgpu.com nvidia.com/cuda

34W. B. Langdon, King's London

http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/gp-code/gp32cuda.tar.gz
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/gp-code/gp32cuda.tar.gz
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/gp-code/gp32cuda.tar.gz
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/gp-code/gp32cuda.tar.gz
ftp://cs.ucl.ac.uk/genetic/gp-code/gpu_gp_2.tar.gz
ftp://cs.ucl.ac.uk/genetic/gp-code/wbl_gecco2004lb_protein.tar.gz
ftp://cs.ucl.ac.uk/genetic/gp-code/random-numbers/gpu_park-miller.tar.gz
ftp://cs.ucl.ac.uk/genetic/gp-code/random-numbers/gpu_park-miller.tar.gz
ftp://cs.ucl.ac.uk/genetic/gp-code/random-numbers/gpu_park-miller.tar.gz
http://www.cs.ucl.ac.uk/staff/W.Langdon/pi_movie.gif
http://www.cs.ucl.ac.uk/staff/W.Langdon/pi2_movie.html
http://www.cs.mun.ca/~blangdon/gpu_gp_slides/nuclear.gif

Speed of GPU interpreter

GeForce 8800 GTX.
Experiment Number of

Terminals

|F| Population Program

size

Stack

depth

Test

cases

Speed

(million

OPs/sec)

Mackey-

Glass

8+128 4 204 800 11.0 4 1200 895

Mackey-

Glass

8+128 4 204 800 13.0 4 1200 1056

Protein 20+128 4 1 048 576 56.9 8 200 504

Lasera 3+128 4 18 225 55.4 8 151 360 656

Laserb 9+128 4 5 000 49.6 8 376 640 190

Cancer 1 013 888+1001 4 5 242 880 ≤15.0 4 128 535

GeneChip 47+1001 6 16 384 ≤ 63.0 8 ⅓M,

sample

200

314

CUDA 2.8 billion

[2009] 3.8 billion

Compiled on 16 mac 4.2 billion (100 10
6

data points)

Examples

• Approximating Pi

• Chaotic Time Series Prediction

• Mega population. Bioinformatics protein
classification

• Is protein nuclear based on num of 20 amino acids

• Predicting Breast Cancer fatalities
• HG-U133A/B probes →10year outcome

• Predicting problems with DNA GeneChips
• HG-U133A correlation between probes in

probesets →MM, A/G ratio and A C

36W. B. Langdon, King's London

