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Introduction

• What is mutation testing

• 2 objectives: Hard to kill, little change to source

• Higher order mutation testing→mutant has more 

than one change 

• How we search with genetic programming

• Results on 3 benchmarks (triangle,schedule,tcas)

• Future

• Conclusions



Mutation Testing

• Software testing is for detecting bugs.

• How good is a test suite? 

– How to improve it? 

– When to stop testing? (No bugs left to discover?)

• Mutation testing is the injection of changes 

similar to human programming bugs for testing.

• Does test suite detect change?

Yes. Maybe test suite ok? 

No. Test suite needs improving? at the mutation? 



Higher Order Mutation Testing

• The order of a mutant is the number of changes.

• 1st order means exactly one change is made to 

the code.

– Most research is on first order mutants. 

• Higher order means two or more changes.
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Multi-Objective Search

• By extending mutation testing to higher orders 

we allow mutants to be more complicated, 

emulating expensive post release bugs which 

require multiple changes to fix.

• To avoid trivial mutants which are detected by 

many tests we search for hard to kill mutants 

which pass almost all of the test suite.

• Two objectives →Pareto multi-objective search
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Evolving High Order Mutants
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Evolving High Order Mutants

• C source converted to BNF grammar

• BNF describes original source plus mutations

• All comparisons can be mutated

• Strongly Typed GP crosses over BNF to give 

new high order mutants.

• Compile population of mutants to give one 

executable. Run it on test suite to give fitness.

• Select parents of next generation.
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Triangle.c
int gettri(int side1, int side2, int side3){ 

int triang ; 

if( side1 <= 0 || side2 <= 0 || side3 <= 0){

return 4;

}

triang = 0;

if(side1 == side2){

triang = triang + 1;

}

if(side1 == side3){

triang = triang + 2;

}

if(side2 == side3){

triang = triang + 3;

}

if(triang == 0){

if(side1 + side2 < side3 || side2 + side3 < side1 || side1 + side3 < side2){

return 4;

}

else {

Potential mutation sites

(comparisons) in red



Triangle BNF syntax
<line1> ::= "int gettriXXX(int side1, int side2, int side3)\n"

<line2> ::= "{\n"

<line3> ::= "    \n"

<line4> ::= "int triang ;\n"

<line5> ::= "    \n"

<line6> ::= <line6A> <line6B> <line6C>

<line6A> ::= "if( side1" <compare> "0 || side2"

<line6B> ::= <compare> "0 || side3"

<line6C> ::= <compare> "0){\n"

<line7> ::= "return 4;\n"

<line8> ::= "}\n"

<line9> ::= "  \n"

<line10> ::= "triang = 0;\n"

<line11> ::= "\n"

<line12> ::= "if(side1" <compare> "side2){\n"

<line13> ::= "triang = triang + 1;\n"

<line14> ::= "}\n"

<line15> ::= "if(side1" <compare> "side3){\n"

<line16> ::= "triang = triang + 2;\n"

<line17> ::= "}\n"

<line18> ::= "if(side2" <compare> "side3){\n”



Triangle BNF syntax 2
<start> ::= <line1> <line2> <line3> <line4> <line5> <line6-23> <line24-41>

<line42> <line43> <line44> <line45> <line46> 

<line6-23> ::= <line6-14> <line15-23> 

<line6-14> ::= <line6-9> <line10-12> <line13> <line14> 

<line6-9> ::= <line6> <line7> <line8> <line9> 

<line10-12> ::= <line10> <line11> <line12> 

<line15-23> ::= <line15-19> <line20-23> 

<line15-19> ::= <line15-16> <line17-18> <line19> 

<line15-16> ::= <line15> <line16> 

<compare> ::= <compare0> | <compare1>

<compare0> ::= <compare00> | <compare01>

<compare00> ::= "<" | "<="

<compare01> ::= "==" | "!="

<compare1> ::= <compare10>

<compare10> ::= ">=" | ">”



Yue’s Triangle Test Cases
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-3 4 5 4

3 4 5 1

3 -4 5 4

3 4 -5 4

-3 -4 -5 4

3 -4 -5 4

-3 4 -5 4

-3 -4 5 4

-3 5 4 4

3 -5 4 4

5 3 -4 4

5 -3 4 4

3 3 5 2

5 3 5 2

3 4 4 2

3 4 8 4

3 9 5 4

12 4 5 4

4 5 12 4

-4 12 5 4

60 test cases chosen to test all branches 

in triangle.c (I.e. branch coverage plus  

tests to cover all Boolean expressions.)

Three integers followed by expected result



Triangle

• 7 first order mutants are very hard to kill (fail 

only 1 test).

• 8 first order mutants are equivalent (pass all)
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Yue's triangle

equivalent 1 median 95% all 60

first order 0.094118 0.082353 4 15 0

second 0.008235 0.016177 9 18 0

third 0.000659 0.002224 11 20 0

fourth 0.000047 0.000249 11 21 0

Random 0 0 10 18 0



High Order Triangle Mutants



High Order Triangle Mutants

The 10 normal operation tests detect >99% of random mutants



Schedule

• 1 first order very hard to kill (only 1 test).

• 10 first order mutants are equivalent (pass all)

W. B. Langdon, Crest 16

equivalent 1 median 0.95 all 2650

first order 0.1429 0.0143 1806 2413 0.0143

second 0.0189 0.0044 2235 2649 0.0303

third 0.0023 0.0009 2324 2649 0.0480

fourth 0.0002 0.0002 2395 2650 0.0672

Random 0 0 2611 2650 0.2954



High Order Schedule Mutants



tcas - aircraft collision avoidance

• 1 first order hard to kill (only passes 3 tests).

• No first order passes only 1 or 2 tests.

• 24 first order mutants are equivalent (pass all)

• As with triangle and schedule, high order tcas 

mutants (HOM) are easy to kill but show some 

interesting structure:

– 428 tests are ineffective against HOM

– 936 tests are almost ineffective against HOM

– 264 tests kill almost all HOM. These tests check for 

aircraft threats.



Evolution of tcas Mutants
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Evolved tcas Mutants

• GP finds 7th order mutant which is killed by 

only one test in generation 14.

• Fifth order mutant found in generation 44

• Second GP run found 4th order (generation 90) 

and third order mutant (generation 105).

• All of these are harder to kill than any first order 

mutant. They affect similar parts of the code but 

are not all semantically identical.
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Evolved 3rd order tcas Mutant

• Changes lines 101, 112, 117:

• 101 and 117 are silent but 112 fails 12 tests.

• Passes all tests except test 1400. Should return 0 

but mutant returns DOWNWARD_RA.

• Fitness 1,23 (1 tests failed, syntax distance=23).

W. B. Langdon, Crest 21

result = Own_Below_Threat() && (Cur_Vertical_Sep >= MINSEP) && (Down_Separation < =ALIM());

result = Own_Below_Threat() && (Cur_Vertical_Sep >= MINSEP) && (Down_Separation >= ALIM());

return (Own_Tracked_Alt <= Other_Tracked_Alt);

return (Own_Tracked_Alt <   Other_Tracked_Alt);

return (Other_Tracked_Alt <= Own_Tracked_Alt);

return (Other_Tracked_Alt <   Own_Tracked_Alt);  (original in gray)

Line 112 Own_Below_Threat()

Line 117 Own_Above_Threat()



gzip
• Time to compile. Time to test

• Frame work needs to be robust to mutant code:

– Time out looping mutants (For and goto)

– Protect against invalid array indexes and pointers 

bgcc −fbounds_checking

– Protect against trashing files. Intercept IO and system

– Trap exceptions

• heavy use of macros and conditional compilation

– Avoid mutations changing configuration but allow in 

.h by operating on source after include/macro 

expansion. gcc –E



gzip first order mutants
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gzip first order mutants
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gzip 2nd order sow’s ear mutants
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Future Work
• Coevolution: Mutants→better tests→tougher mutants
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Conclusions

• Random high order mutants are easy to kill but 

may provide insight into code and test suite.

• Mutation testing can be viewed as multi-

objective search.

• GP can find high order mutants which are both 

hard to find and do not make too many changes 

to the original source code. 
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The End !!!



More information on GP

• http://www.cs.ucl.ac.uk/staff/W.Langdon

– A Field Guide to Genetic Programming, Free, 2008

– Foundations of GP, Springer, 2002

– GP and Data Structures, Kluwer, 1998
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