
Multi-Objective

Higher Order Mutation Testing with

Genetic Programming

W. B. Langdon

King’s College, London

W. B. Langdon, Crest 1

W. B. Langdon, Crest 2

Introduction

• What is mutation testing

• 2 objectives: Hard to kill, little change to source

• Higher order mutation testing→mutant has more

than one change

• How we search with genetic programming

• Results on 3 benchmarks (triangle,schedule,tcas)

• Future

• Conclusions

Mutation Testing

• Software testing is for detecting bugs.

• How good is a test suite?

– How to improve it?

– When to stop testing? (No bugs left to discover?)

• Mutation testing is the injection of changes

similar to human programming bugs for testing.

• Does test suite detect change?

Yes. Maybe test suite ok?

No. Test suite needs improving? at the mutation?

Higher Order Mutation Testing

• The order of a mutant is the number of changes.

• 1st order means exactly one change is made to

the code.

– Most research is on first order mutants.

• Higher order means two or more changes.

4W. B. Langdon, Crest

Multi-Objective Search

• By extending mutation testing to higher orders

we allow mutants to be more complicated,

emulating expensive post release bugs which

require multiple changes to fix.

• To avoid trivial mutants which are detected by

many tests we search for hard to kill mutants

which pass almost all of the test suite.

• Two objectives →Pareto multi-objective search

W. B. Langdon, Crest 5

Evolving High Order Mutants

W. B. Langdon, Crest 6

Evolving High Order Mutants

• C source converted to BNF grammar

• BNF describes original source plus mutations

• All comparisons can be mutated

• Strongly Typed GP crosses over BNF to give

new high order mutants.

• Compile population of mutants to give one

executable. Run it on test suite to give fitness.

• Select parents of next generation.

W. B. Langdon, Crest 7

W. B. Langdon, Crest 8

Triangle.c
int gettri(int side1, int side2, int side3){

int triang ;

if(side1 <= 0 || side2 <= 0 || side3 <= 0){

return 4;

}

triang = 0;

if(side1 == side2){

triang = triang + 1;

}

if(side1 == side3){

triang = triang + 2;

}

if(side2 == side3){

triang = triang + 3;

}

if(triang == 0){

if(side1 + side2 < side3 || side2 + side3 < side1 || side1 + side3 < side2){

return 4;

}

else {

Potential mutation sites

(comparisons) in red

Triangle BNF syntax
<line1> ::= "int gettriXXX(int side1, int side2, int side3)\n"

<line2> ::= "{\n"

<line3> ::= " \n"

<line4> ::= "int triang ;\n"

<line5> ::= " \n"

<line6> ::= <line6A> <line6B> <line6C>

<line6A> ::= "if(side1" <compare> "0 || side2"

<line6B> ::= <compare> "0 || side3"

<line6C> ::= <compare> "0){\n"

<line7> ::= "return 4;\n"

<line8> ::= "}\n"

<line9> ::= " \n"

<line10> ::= "triang = 0;\n"

<line11> ::= "\n"

<line12> ::= "if(side1" <compare> "side2){\n"

<line13> ::= "triang = triang + 1;\n"

<line14> ::= "}\n"

<line15> ::= "if(side1" <compare> "side3){\n"

<line16> ::= "triang = triang + 2;\n"

<line17> ::= "}\n"

<line18> ::= "if(side2" <compare> "side3){\n”

Triangle BNF syntax 2
<start> ::= <line1> <line2> <line3> <line4> <line5> <line6-23> <line24-41>

<line42> <line43> <line44> <line45> <line46>

<line6-23> ::= <line6-14> <line15-23>

<line6-14> ::= <line6-9> <line10-12> <line13> <line14>

<line6-9> ::= <line6> <line7> <line8> <line9>

<line10-12> ::= <line10> <line11> <line12>

<line15-23> ::= <line15-19> <line20-23>

<line15-19> ::= <line15-16> <line17-18> <line19>

<line15-16> ::= <line15> <line16>

<compare> ::= <compare0> | <compare1>

<compare0> ::= <compare00> | <compare01>

<compare00> ::= "<" | "<="

<compare01> ::= "==" | "!="

<compare1> ::= <compare10>

<compare10> ::= ">=" | ">”

Yue’s Triangle Test Cases

W. B. Langdon, Crest 12

-3 4 5 4

3 4 5 1

3 -4 5 4

3 4 -5 4

-3 -4 -5 4

3 -4 -5 4

-3 4 -5 4

-3 -4 5 4

-3 5 4 4

3 -5 4 4

5 3 -4 4

5 -3 4 4

3 3 5 2

5 3 5 2

3 4 4 2

3 4 8 4

3 9 5 4

12 4 5 4

4 5 12 4

-4 12 5 4

60 test cases chosen to test all branches

in triangle.c (I.e. branch coverage plus

tests to cover all Boolean expressions.)

Three integers followed by expected result

Triangle

• 7 first order mutants are very hard to kill (fail

only 1 test).

• 8 first order mutants are equivalent (pass all)

W. B. Langdon, Crest 13

Yue's triangle

equivalent 1 median 95% all 60

first order 0.094118 0.082353 4 15 0

second 0.008235 0.016177 9 18 0

third 0.000659 0.002224 11 20 0

fourth 0.000047 0.000249 11 21 0

Random 0 0 10 18 0

High Order Triangle Mutants

High Order Triangle Mutants

The 10 normal operation tests detect >99% of random mutants

Schedule

• 1 first order very hard to kill (only 1 test).

• 10 first order mutants are equivalent (pass all)

W. B. Langdon, Crest 16

equivalent 1 median 0.95 all 2650

first order 0.1429 0.0143 1806 2413 0.0143

second 0.0189 0.0044 2235 2649 0.0303

third 0.0023 0.0009 2324 2649 0.0480

fourth 0.0002 0.0002 2395 2650 0.0672

Random 0 0 2611 2650 0.2954

High Order Schedule Mutants

tcas - aircraft collision avoidance

• 1 first order hard to kill (only passes 3 tests).

• No first order passes only 1 or 2 tests.

• 24 first order mutants are equivalent (pass all)

• As with triangle and schedule, high order tcas

mutants (HOM) are easy to kill but show some

interesting structure:

– 428 tests are ineffective against HOM

– 936 tests are almost ineffective against HOM

– 264 tests kill almost all HOM. These tests check for

aircraft threats.

Evolution of tcas Mutants

W. B. Langdon, Crest 19

Evolved tcas Mutants

• GP finds 7th order mutant which is killed by

only one test in generation 14.

• Fifth order mutant found in generation 44

• Second GP run found 4th order (generation 90)

and third order mutant (generation 105).

• All of these are harder to kill than any first order

mutant. They affect similar parts of the code but

are not all semantically identical.

W. B. Langdon, Crest 20

Evolved 3rd order tcas Mutant

• Changes lines 101, 112, 117:

• 101 and 117 are silent but 112 fails 12 tests.

• Passes all tests except test 1400. Should return 0

but mutant returns DOWNWARD_RA.

• Fitness 1,23 (1 tests failed, syntax distance=23).

W. B. Langdon, Crest 21

result = Own_Below_Threat() && (Cur_Vertical_Sep >= MINSEP) && (Down_Separation < =ALIM());

result = Own_Below_Threat() && (Cur_Vertical_Sep >= MINSEP) && (Down_Separation >= ALIM());

return (Own_Tracked_Alt <= Other_Tracked_Alt);

return (Own_Tracked_Alt < Other_Tracked_Alt);

return (Other_Tracked_Alt <= Own_Tracked_Alt);

return (Other_Tracked_Alt < Own_Tracked_Alt); (original in gray)

Line 112 Own_Below_Threat()

Line 117 Own_Above_Threat()

gzip
• Time to compile. Time to test

• Frame work needs to be robust to mutant code:

– Time out looping mutants (For and goto)

– Protect against invalid array indexes and pointers

bgcc −fbounds_checking

– Protect against trashing files. Intercept IO and system

– Trap exceptions

• heavy use of macros and conditional compilation

– Avoid mutations changing configuration but allow in

.h by operating on source after include/macro

expansion. gcc –E

gzip first order mutants

W. B. Langdon, Crest 23

gzip first order mutants

W. B. Langdon, Crest 24

gzip 2nd order sow’s ear mutants

W. B. Langdon, Crest 25

Future Work
• Coevolution: Mutants→better tests→tougher mutants

W. B. Langdon, Crest 27

Conclusions

• Random high order mutants are easy to kill but

may provide insight into code and test suite.

• Mutation testing can be viewed as multi-

objective search.

• GP can find high order mutants which are both

hard to find and do not make too many changes

to the original source code.

W. B. Langdon, Crest 28

The End !!!

More information on GP

• http://www.cs.ucl.ac.uk/staff/W.Langdon

– A Field Guide to Genetic Programming, Free, 2008

– Foundations of GP, Springer, 2002

– GP and Data Structures, Kluwer, 1998

W. B. Langdon, Crest 29

