A Theoretical & Empirical Analysis of Evolutionary Testing and Hill Climbing for Structural Test Data Generation ISSTA July 2007

Mark Harman
King's College London

Phil McMinn
Sheffield University

Mark Harman

Mark Harman
King's College London

Phil McMinn Sheffield University

Mark Harman

Mark Harman and Phil McMinn.
A Theoretical and Empirical Analysis of Evolutionary Testing and Hill Climbing for Structural Test Data Generation
ISSTA 2007.

Mark Harman and Phil McMinn, A Theoretical and Empirical Study of Search Based Testing: Local, Global and Hybrid Search TSE. To appear.

Mark Harman

Mark Harman and Phil McMinn. A Theoretical and Empirical Analysis of Evolutionary Testing and Hill Climbing for Structural Test Data Generation ISSTA 2007.

Mark Harman and Phil McMinn, A Theoretical and Empirical Study of Search Based Testing: Local, Global and Hybrid Search TSE. To appear.

Mark Harman

Mark Harman and Phil McMinn. A Theoretical and Empirical Analysis of Evolutionary Testing and Hill Climbing for Structural Test Data Generation ISSTA 2007.

Mark Harman and Phil McMinn, A Theoretical and Empirical Study of Search Based Testing Local, Global and Hybrid Search TSE. To appear.

Author order is alphabetical

Mark Harman

Where is King's College London?

Mark Harman

Where is Sheffield University?

Mark Harman

No Full Monty Joke

No Full Monty Joke

Overview

Search Based Testing

Local: Hill Climbing using Alternating variable method

Global: Genetic Algorithms

Theoretical foundations

Schemas

Royal Roads

Empirical study Implications

Mark Harman

In Search based testing we apply search techniques to search large input spaces, guided by a fitness function.

In Search based testing we apply search techniques to search large input spaces, guided by a fitness function.

Genetic Algorithms, Hill climbing, Simulated Annealing, Random, Tabu Search, Estimation of Distribution Algorithms, Particle Swarm Optimization

In Search based testing we apply search techniques to search large input spaces, guided by a fitness function.

Genetic Algorithms, Hill climbing, Simulated Annealing, Random, Tabu Search, Estimation of Distribution Algorithms, Particle Swarm Optimization

In Search based testing we apply search techniques to search large input spaces, guided by a fitness function.

Genetic Algorithms, Hill climbing, Simulated Annealing, Random, Tabu Search, Estimation of Distribution Algorithms, Particle Swarm Optimization

Structural Testing

Focus on branch testing

Most widely studied

So ready for some more in depth analysis

Other Search Based Testing Applications

Temporal Wegener et al.

Coverage Pargass & Harrold, Xanthakis et al., McMinn, Harman, Michael et al, Sthamer, Jones ...

Functional Wegener et al.

Regression Rothermel et al., Woolcott et al., Yoo and Harman,...

Interaction Cohen et al. Bryce, Colbourn

Exception Tracey and Clark

Stress Briand et al., Antoniol, Di Penta

Robustness Shultz et al.

Mark Harman

Structural Testing

Focus on branch testing

Most widely studied

So ready for some more in depth analysis

Two algorithms:

Hill Climbing, using Korel's alternating variable method Genetic Algorithms, using DaimlerChrysler approach

Structural Testing

Focus on branch testing

Most widely studied

So ready for some more in depth analysis

Two algorithms:

Hill Climbing, using Korel's alternating variable method Genetic Algorithms, using DaimlerChrysler approach

... and Random Search

Fitness Computation

Alternating Variable Method

The alternating variable method is hill climbing plus accelerated moves

Near Neighbour?
One small increase
One small decrease

For some input variable

Method:

Cycle through input variables one at a time:

probe moves move to near neighbour:
 If probing works, make accelerated pattern moves
Until no improvement on any variable

Mark Harman

Goal-Oriented Approach:

Alternating Variable Method

Mark Harman

Hill Climbing → Steepest Descent

Hill Climbing ↔ Steepest Descent

Mark Harman

Alternating Variable Method Example

```
void example(int a, int b, int c) {
    if (a == 0) {
        ...
    }

    if (b == 0) {
        // target
    }
}
```

```
Random start: a=10
c=30
Case a:-
             Probe move has
   no effect
Case b:-
             Decrease probe
   improves
            So accelerate
   until b=0
```


Mark Harman

ISSTA: Empirical and Theoretical Search Based Testing

Case c:-

Evolutionary Algorithms

Mark Harman

Evolutionary Testing

Mark Harman

Evolutionary Testing

Mark Harman

Evolutionary Testing

Mark Harman

Mating is really very much an analogy
The important property is *crossover*

Mark Harman

Mark Harman

Fitness Landscape

Mark Harman

Hitchcock Fitness Landscape

Mark Harman

Hitchcock Fitness Landscape

Hitchcock Fitness Landscape

But ...

When does it work
Why does it work (when it does)?
How does it compare to local search?

38

```
Pop[1] = 01011100101010110010010001
Pop[2] = 1010010010101010111111000000
Pop[3] = 01010010101010100000101110
Pop[4] = 0101111010101011111110101001...
```



```
Pop[1] = 01011100101010110010010001
Pop[2] = 1010010010101010111111000000
Pop[3] = 0101001010101010000010110
Pop[4] = 0101111010101011111110101001
...
```



```
Pop[1] = 01011100101010110010010001
Pop[2] = 1010010010101010111111000000
Pop[3] = 01010010101010100000101110
Pop[4] = 0101111010101011111110101001
...
```



```
Pop[1] = 0101110010101010110010010001
Pop[2] = 1010010010101010111111000000
Pop[3] = 0101001010101010000010110
Pop[4] = 0101111010101011111110101001...
```


$$\overline{f}(\mathbf{h},K) = \frac{1}{\mid \{x \mid x \in \mathbf{h} \land x \in K\} \mid} \sum_{x \in \mathbf{h} \land x \in K} f(x)$$

$$N(\mathbf{h}, g+1) \ge N(\mathbf{h}, g) \frac{\overline{f}(\mathbf{h}, P(g))}{\frac{1}{M} \sum_{x \in P(g)} f(x)}$$

$$N(\mathbf{h},g+1) \geq N(\mathbf{h},g) \frac{\overline{f}(\mathbf{h},P(g))}{\frac{1}{M} \sum_{x \in P(g)} f(x)} (1 - p_c \frac{\delta(\mathbf{h})}{\lambda - 1} - p_m \ o(\mathbf{h}))$$

Mark Harman

$$\overline{f}(\mathbf{h},K) = \frac{1}{\mid \{x \mid x \in \mathbf{h} \land x \in K\} \mid} \sum_{x \in \mathbf{h} \land x \in K} f(x)$$

$$N(\mathbf{h},g+1) \geq N(\mathbf{h},g) \frac{\overline{f}(\mathbf{h},P(g))}{\frac{1}{M} \sum_{x \in P(g)} f(x)}$$

$$N(\mathbf{h}, g+1) \ge N(\mathbf{h}, g) \frac{\overline{f}(\mathbf{h}, P(g))}{\frac{1}{M} \sum_{x \in P(g)} f(x)} (\mathbf{1} - \mathbf{p_c} \frac{\delta(\mathbf{h})}{\lambda - 1} - \mathbf{p_m} \ o(\mathbf{h}))$$

Mark Harman

ISSTA: Empirical and Theoretical Search Based Testing

Mark Harman

ISSTA: Empirical and Theoretical Search Based Testing


```
S1:
   1111****
S2:
   ****<u>1111</u>****************
S3:
   ********1111************
   ****<sup>*</sup>*******<sup>1</sup>1111**************
S4:
   ******************
S5:
S6:
   *****************<u>1111</u>****
   *********************
S7:
   *****************
S8:
S9:
   111111111****
S10: *******111111111*********
S11: *************111111111******
S13: 111111111111111111************
```



```
S1:
   1111*******
S2:
   ****1111**************
S3:
   ********1111************
   ****<sup>*</sup>*******<sup>1</sup>1111**************
S4:
S5:
   ****************
S6:
   *****************<u>1111</u>****
   *********************
S7:
S8:
   *********************
S9:
   111111111**************
S10: *******111111111*********
S11: *************111111111******
S13: 111111111111111111************
```



```
S1:
   1111*******
S2:
   ****1111**************
S3:
   ********1111************
   ****<sup>*</sup>*******<sup>1</sup>1111**************
S4:
S5:
   ****************
S6:
   *****************<u>1111</u>****
S7:
   *********************
S8:
   *********************
S9:
   11111111 *** *** *** *** *** *** ***
S10: *******111111111*********
S11: *************111111111******
S13: 111111111111111111************
```



```
S1:
  1111****
S2:
  ****<u>1111</u>*****************
S4:
S5:
  **************1111********
S6:
  S7:
  S8:
  *********************
S9:
  111111111**************
S11: ***********************
S13: 111111111111111111************
```



```
S1:
   1111****
S2:
   ****<u>1111</u>*****************
S3:
   ********1111************
   ***********1111****
S4:
   ******************
S5:
S6:
   *****************<u>1111</u>****
S7:
   *********************
S8:
   *********************
S9:
   111111111****
S11: *************111111111******
```



```
S1:
   1111****
S2:
   ****<u>1111</u>*****************
S3:
   ********1111************
   ***********1111****
S4:
   ****************
S5:
S6:
   *****************<u>1111</u>****
S7:
   *********************
   *****************
S8:
S9:
   111111111**************
S10: ********111111111********
S11: *************111111111******
```


Subjects

Bibclean open source BibTeX pretty printer

Eurocheck open source € serial number validation

Gimp open source image manipulation

Spice analogue circuit simulator

Tiff TIFF library for image manipulation

Space ever heard of this one?

Experimental set up

Fitness evaluations 100,000

Executions 30

Same seeds for statistical testing

Overall Results

- Covered by all
- Uncovered or infeasible
- Covered by random only
- Covered by GA only
- Covered by hill climbing only
- Covered by GA and hill climbing

Results

From 640 branches in the six subjects

10 branches

for which Evolutionary Testing was successful but a simple Hill Climb search was not

5 branches

for which Hill Climbing was successful but Evolutionary Testing was not

26 branches

Comparability

Royal Roads?

8 branches

Evolutionary Testing succeeds where Hill Climbing fails:

Branches of the bibclean test object String check for a valid ISBN/ISSN At least 10 digits

Headless chicken test: success rate

Headless chicken test: test effort

Comparison Local vs Global

Comparison Local vs Global

Evolutionary Testing Hill Climbing

HC outperforms GA

HC is fast, easy and effective
In 24 of the 26 comparable cases it beats GA
Average speed up is approximately a factor of 20
The results were statistically significant (paired *t* test)

Conclusions

GA does perform well for Royal Road Functions ... and this is because of the cross over operator

But how many real programs have royal roads?

For those which don't HC is comfortably faster

- ... by an order of magnitude
- ... evolution strategies may outperform GA for RR

Of course random covers most branches

... but only the easy ones

Future work

Memetic algorithms
Evolution strategies
Multi objective test data generation
Study of SBT and DART
Other GA theories

