
Automatically Automatically
Finding Patches Finding Patches
Using Genetic Using Genetic
ProgrammingProgramming

Westley Weimer,Westley Weimer,
Stephanie Forrest,Stephanie Forrest,
Claire Le Goues,Claire Le Goues,
ThanVu Nguyen, ThanVu Nguyen,

Ethan Fast, Ethan Fast,
Briana Satchell,Briana Satchell,

Eric SchulteEric Schulte

2

Motivation
● Software Quality remains a key problem

● Over one half of 1 percent of US GDP each year [NIST02]

● The cost of fixing a defect increases ($25 - $16k) [IBM08]

● Even security-critical bugs take 28 days (avg) [Symantec06]

● Despite bug detection and test suites
● Programs ship with known bugs

● How can we reduce debugging costs?
● Bug reports accompanied by patches are addressed

more rapidly
● Thus: Automated Patch Generation

3

Main Claim
● We can automatically and efficiently repair

certain classes of bugs in off-the-shelf,
unannotated legacy programs.

● Basic idea: Biased search through the space of
certain nearby programs until you find a
variant that repairs the problem. Key insights:
● Use existing test cases to evaluate variants.
● Search by perturbing parts of the program likely to

contain the error.

ICSE'09 Best Paper, GECCO'09 Best Paper, SBST'09 Best Short Paper,
2009 IFIP TC2 Manfred Paul Award, 2009 Gold Human-Competitive Award

4

Repair Process Preview
● Input:

● The program source code
● System/regression tests passed by the program
● A test case failed by the program (= the bug)

● Genetic Programming Work:
● Create variants of the program
● Run them on the test cases
● Repeat, retaining and combining variants

● Output:
● New program source code that passes all tests
● or “no solution found in time”

5

This Talk

● Fixing Real Bugs In Real Programs
● Representation and Operations

● The Quality of Automated Repairs
● Self-Healing Systems and Metrics

● Test Suite Selection
● Success and Explanations

● Open Questions in Automated Repair

6

Genetic Programming
● Genetic programming is the application of

evolutionary or genetic algorithms to program source
code.
● Representing a population of program variants
● Mutation and crossover operations
● Fitness function

● GP serves as a search heuristic
● Others (random search, brute force, etc.) also work

● Similar in ways to search-based software engineering:
● Regression tests to guide the search

7

Useful Insight #1 – Where To Fix

● In a large program, not every line is equally
likely to contribute to the bug.

● Fault localization: given a bug, find its
location in the program source.

● Insight: since we have the test cases, run them
and collect coverage information.

● The bug is more likely to be found on lines
visited when running the failed test case.

● The bug is less likely to be found on lines
visited when running the passed test cases.

8

Useful Insight #2 – How To Fix
● Developers often use statements or lines of

code as atomic units representing actions
● Insight: operate on statements or lines

● Not on assembly ops or expressions
● Factor of 10 reduction in search space each time

● Insight: do not invent new code
● Instead, copy and modify existing statements

● We assume the program “contains the seeds of
its own repair”
● e.g., has another null check somewhere

9

Fault Localization Formalism

● We define a weighted path to be a list of
<statement, weight> pairs.

● We use this weighted path:
● The statements are those visited during the failed

test case.
● The weight for a statement S is

– High (1.0) if S is not visited on a passed test
– Low (0.0-0.1) if S is also visited on a passed test

● (Other weight sources are possible: e.g.,
Cooperative Bug Isolation or Daikon predicates)

10

Genetic Programming for
Program Repair: Mutation

● Population of Variants:
● Each variant is an <AST, weighted path> pair

● Mutation:
● To mutate a variant V = <AST

V
, wp

V
>, choose a

statement S from wp
V
 biased by the weights

● Replacement. Replace S with S1
● Insertion. Replace S with { S2 ; S }
● Deletion. Replace S with { }
● Choose S1 and S2 from the entire AST
● All variants retain weighted path length

11

Genetic Programming for
Program Repair: Fitness

● Compile a variant
● If it fails to compile, Fitness = 0
● Otherwise, run it on the test cases
● Fitness = number of test cases passed
● Weighted: passing the bug test case is worth more

● Selection and Crossover
● Higher fitness variants are retained and combined

into the next generation
● Tournament selection and one-point crossover

● Repeat until a solution is found

12

Example: GCD
/* requires: a >= 0, b >= 0 */
void print_gcd(int a, int b) {
if (a == 0)
printf(“%d”, b);

while (b != 0) {
if (a > b)
a = a – b;

else
b = b – a;

}
 printf(“%d”, a);
return;

}

Bug: when
a==0 and b>0,
it loops forever!

13

{ block }

if (a==0) while
(b != 0)

printf(... a)

if
(isLeapYear)

if
(a > b)

{ block }{ block }

return

{ block }{ block }

printf(... b)

a = a - b b = b - a

{ block }

Example: Abstract Syntax Tree

14

{ block }

if (a==0) while
(b != 0)

printf(... a)

if
(isLeapYear)

if
(a > b)

{ block }{ block }

return

{ block }{ block }

printf(... b)

a = a - b b = b - a

{ block }

Example: Weighted Path (1/3)

(printf ...b)

Nodes visited on
Negative test case
(a=0,b=55) :

15

{ block }

if (a==0) while
(b != 0)

printf(... a)

if
(isLeapYear)

if
(a > b)

{ block }{ block }

return

{ block }{ block }

printf(... b)

a = a - b b = b - a

{ block }

Example: Weighted Path (2/3)

(printf ...b)

Nodes visited on
Negative test case
(a=0,b=55) :

b = b - a

Nodes visited on
Positive test case
(a=1071,b=1029) :

16

{ block }

if (a==0) while
(b != 0)

printf(... a)

if
(isLeapYear)

if
(a > b)

{ block }{ block }

return

{ block }{ block }

printf(... b)

a = a - b b = b - a

{ block }

Example: Weighted Path (3/3)

(printf ...b)

Weighted Path:

17

{ block }

if (a==0) while
(b != 0)

printf(... a)

if
(isLeapYear)

if
(a > b)

{ block }{ block }

return

{ block }{ block }

printf(... b)

a = a - b b = b - a

{ block }

Example: Mutation (1/2)

Mutation Source: Anywhere in AST
Mutation Destination: Weighted Path

18

{ block }

if (a==0) while
(b != 0)

printf(... a)

if
(isLeapYear)

if
(a > b)

{ block }{ block }

return

{ block }{ block }

printf(... b)

a = a - b b = b - a

{ block }

Example: Mutation (2/2)

Mutation Source: Anywhere in AST
Mutation Destination: Weighted Path

return

19

{ block }

if (a==0) while
(b != 0)

printf(... a)

if
(isLeapYear)

if
(a > b)

{ block }{ block }

return

{ block }{ block }

printf(... b)

a = a - b b = b - a

{ block }

Example: Final Repair

return

20

Minimize The Repair
● Repair Patch is a diff between orig and variant
● Mutations may add unneeded statements

● (e.g., dead code, redundant computation)
● In essence: try removing each line in the diff

and check if the result still passes all tests
● Delta Debugging finds a 1-minimal subset of

the diff in O(n2) time
● Removing any single line causes a test to fail

● We use a tree-structured diff algorithm (diffX)
● Avoids problems with balanced curly braces, etc.

21

Experimental Results: 20 Repairs

Many defects from “black hat” lists; avg minimization time: 12 seconds.

22

The Story Thus Far

● How does the approach work?
● Create programs in a restricted search space

● Can it produce repairs?
● Yes, for many types of programs and defects

● Can I afford to use it?
● Are the repairs trustworthy?
● Does the approach scale?

23

Repair Quality
● Repairs are typically not what a human would

have done
● Example: our technique adds bounds checks to one

particular network read, rather than refactoring to
use a safe abstract string class in multiple places

● Recall: any proposed repair must pass all
regression test cases
● When POST test is omitted from nullhttpd, the

generated repair eliminates POST functionality
● Tests ensure we do not sacrifice functionality
● Minimization prevents gratuitous deletions
● Adding more tests helps rather than hurting

24

Repair Quality Experiment

● A high-quality repair ...
● Retains required functionality
● Does not introduce new bugs
● Is not a “fragile memorization” of the buggy input
● Works as part of an entire system

● If humans are present, they can inspect it
● Let's consider a human-free situation, such as:

● A long-running server with an anomaly intrusion
detection system that will generate and deploy
repairs for all detected anomalies.

25

Repair Quality Benchmarks

● Two webservers with buffer overflows
● nullhttpd (simple, multithreaded)

● lighttpd (used by Wikimedia, etc.)
● 138,226 requests from 12,743 distinct client IP

addresses (held out; one day of data)
● One web application language interpreter

● php (integer overflow vulnerability)
● 15kloc secure reservation system web app
● 12,375 requests (held out; one day of data)

26

Repair Quality Experimental Setup

● Apply indicative workloads to vanilla servers
● Record result contents and times

● Send attack input
● Caught by anomaly intrusion detection system

● Generate and deploy repair
● Using attack input and six test cases

● Apply indicative workload to patched server
● Each request must yield exactly the same output

(bit-per-bit) in the same time or less!

27

Closed-Loop Outcomes
Case Anomaly

Detected?
Successful

Repair?
Result

1 True Neg. N/A Legitimate request handled correctly;
no repair

2 False Neg. N/A Attack succeeds; Repair not
attempted

3 True Pos. Yes Attack stopped and bug fixed. Later
requests could be lost if repair

breaks functionality

4 True Pos. No Attack detected; bug not repaired

5 False Pos. No Legitimate request dropped; repair
not found

6 False Pos. Yes Legitimate request dropped; later
requests may be harmed if “repair”

is incorrect

28

Repair Quality Results

Program Requests Lost
Making Repair

Requests Lost to
Repair Quality

General Fuzz
Tests Failed

Exploit Fuzz
Tests Failed

nullhttpd 2.38% ± 0.83% 0.00% ± 0.25% 0 → 0 10 → 0

lighttpd 0.98% ± 0.11% 0.03% ± 1.53% 1410 → 1410 9 → 0

php 0.12% ± 0.00% 0.02% ± 0.02% 3 → 3 5 → 0

nullhttpd
False Pos #1

7.83% ± 0.49% 0.00% ± 2.22% 0 → 0 n/a

nullhttpd
False Pos #2

3.04% ± 0.29% 0.57% ± 3.91% 0 → 0 n/a

nullhttpd
False Pos #3

6.92% ± 0.09%
(no repair!)

n/a n/a n/a

29

Program Requests Lost
Making Repair

Requests Lost to
Repair Quality

General Fuzz
Tests Failed

Exploit Fuzz
Tests Failed

nullhttpd 2.38% ± 0.83% 0.00% ± 0.25% 0 → 0 10 → 0

lighttpd 0.98% ± 0.11% 0.03% ± 1.53% 1410 → 1410 9 → 0

php 0.12% ± 0.00% 0.02% ± 0.02% 3 → 3 5 → 0

nullhttpd
False Pos #1

7.83% ± 0.49% 0.00% ± 2.22% 0 → 0 n/a

nullhttpd
False Pos #2

3.04% ± 0.29% 0.57% ± 3.91% 0 → 0 n/a

nullhttpd
False Pos #3

6.92% ± 0.09%
(no repair!)

n/a n/a n/a

Repair Quality Results

30

Program Requests Lost
Making Repair

Requests Lost to
Repair Quality

General Fuzz
Tests Failed

Exploit Fuzz
Tests Failed

nullhttpd 2.38% ± 0.83% 0.00% ± 0.25% 0 → 0 10 → 0

lighttpd 0.98% ± 0.11% 0.03% ± 1.53% 1410 → 1410 9 → 0

php 0.12% ± 0.00% 0.02% ± 0.02% 3 → 3 5 → 0

nullhttpd
False Pos #1

7.83% ± 0.49% 0.00% ± 2.22% 0 → 0 n/a

nullhttpd
False Pos #2

3.04% ± 0.29% 0.57% ± 3.91% 0 → 0 n/a

nullhttpd
False Pos #3

6.92% ± 0.09%
(no repair!)

n/a n/a n/a

Repair Quality Results

31

Repair Quality Conclusions

● It is possible to create repairs that
● Retain required functionality
● Do not introduce new bugs
● Are not a fragile memorizations
● Work as part of an entire system

● This reduces to the problem of supplying a
good test suite

● For webservers and php, a few indicative end-
to-end system tests suffice
● But in general we may need more test cases ...

32

Algorithm Scalability

● We want to quickly produce high-quality
repairs for complicated defects in large
programs with arbitrary test suites

● GP is a heuristic search strategy
● Worst-case run time is effectively

● Size of search space multipled by
● Time to evaluate a point in the search space

● Examine fitness cost first, then search space

33

Fitness Scalability

● 1000 fitness evaluations means 1000 complete
runs of your test suite
● This task can be done in parallel (two ways)

● We view it as an advantage that we can repair
programs with only a few test cases

● But we want to scale to more larger test suites
● For both performance and correctness

● Test cases encode required behavior!

34

Test Suite Purposes
● Thus far, the full test suite determines:

● Do we keep this variant in the next generation?
● Is this a candidate repair that passes all tests?

● Insight: split these tasks
● Use a small subset of tests to decide “keep/drop”
● GP structure allows noise
● Use the full suite to evaluate candidate repairs

35

Test Suite Selection

● Can choose subset at random or by some other
metric (e.g., max coverage, min time)

● In intermediate steps, poor test selection:
● Retains variants that should be dropped
● Drops variants that should be kept (rare)
● Distorts the view of the fitness landscape

● Thus requiring more generations
● Does the time saved in fitness evaluations

exceed the cost of being “led astray” ?

36

Tests Suite Selection Algorithms

● Random Subset
● Pick next test at random without replacement

● Time-Aware Test Suite Prioritization
● Includes test time and test coverage

(Walcott, Soffa, Kapfhammer, Roos. ISSTA'06)

● Greedy Coverage
● Pick next test to maximize coverage gains

37

Test Suite Selection Results

● 10 programs, each with 100+ test cases

● Selection reduces time-to-repair by 81%
● Yields equivalent-quality repairs
● leukocyte with 100 tests: 90 mins to 6 mins
● imagemagick with 100 tests: 36 mins to 3 mins

38

Test Suite Selection Explained
● Small changes between variants mean most

variants have similar test case behavior
● True. However, an optimal safe impact analysis

could only reduce time-to-repair by 29% (cf. 81%)
● The test cases are all dependent, and thus

running one is as good as running another
● False. There was only a 3% performance increase

between high-overlap and low-overlap suites.
● The fitness function can tolerate noise

● True. Test suite selection on gcd distorts the
fitness function by 27%. (cf. Fitness Distance Correlation)

39

Search Space Scalability

● So each variant can be evaluated rapidly
● The other factor in cost is the number of

variants examined
● i.e., the size of the search space

● This is related to fault localization precision,
not overall program size
● Since we only mutate and crossover statements

along the weighted path

40

Search Space vs. Fault Localization

41

Outline

● Fixing Real Bugs In Real Programs
● Representation and Operations

● The Quality of Automated Repairs
● Self-Healing Systems and Metrics

● Test Suite Selection
● Success and Explanations

● Open Questions in Automated Repair

42

Can Formal Specifications Be Used?

● Use Local Annotations in Mutation
● Typestate Repair

● Algorithms for repairing programs with respect to a
temporal safety policy

● Provably safe with respect to that one policy
● Synthesis

● Use GP to identify regions, not to copy statements
● Refactoring for Formal Verification

● If repair is correct but cannot easily be verified

43

What Fault Localization is Possible?

● Standard approaches (e.g., Tarantula)
● Cooperative Bug Isolation

● Instrument program with Daikon-style predicates
● Measure which are false on normal runs but true on

failing runs (etc.)
● Have repaired a program using a weighted path

induced from CBI information
● Impact on mutation operator:

● Guide changes to flip predicates

44

What Mutations are Possible?

● Goal: increase “expressive power”
● Expression-level Mutation

● Increases size of search space
● In practice, reduces time-to-repair by 30%

– “x=3;” vs. “x=0; x++; x++; x++;”

● “Typed” Repair Templates
● “if (local_ptr != NULL) { local_stmt(local_ptr); }”
● Manually crafted or mined automatically

– Distance metric on changes

45

Can We Handle Threads?

● Currently we assume a deterministic fitness
function and the ability to localize faults.

● VM Integration
● Add scheduler constraints to the representation
● Repair = code changes plus scheduler directives

● Context-Bounded
● Existing tools can prove the presence or absence of

race conditions assuming at most k thread
interleavings

46

Can We Do More Than Repair?

● Evolutionary approaches are traditionally
strong at small optimization and synthesis

● Vertex and Pixel Shaders
● Small C programs used by modern graphics cards
● Optimize for space or speed
● Can be “10% blurrier” than original
● What is “fault localization” here?

47

Is Our Fitness Function Reasonable?

● A good fitness function increases for more
desirable variants

● Ours is accurate at the extremes
● But weak in the middle

● Correlation with an “optimal” tree structured
distance metric for known repairs is ~0.3

● Can we combine test case counts with ...
● Invariants retained, anomaly detection signals, ...

48

Is Competitive Coevolution Possible?
● In the security domain, white hats and black

hats both want to identify the next attack as
quickly as possible

● Can we simulate this “arms race”?
● Many exploits are themselves C programs
● For a small exploitable program we have evolved a

repair, then evolved the exploit to work again,
then evolved a second repair

● Automated Hardening and Synthetic Diversity
● Repair old programs against various signals
● Does it defeat attacks that came out later?

49

Conclusions
● We can automatically and efficiently repair

certain classes of bugs in off-the-shelf legacy
programs.
● 20 programs totaling 186kloc in about 5 minutes

each, on average
● We use regression tests to encode desired

behavior.
● Existing tests encode required behavior

● The genetic programming search focuses
attention on parts of the program visited
during the bug but not visited during passed
test cases.

50

Questions

● I encourage difficult questions.

51

Bonus Slide: Test Cases

52

Evolution of Zune Repair
(5 normal test cases weighing 1 each,
2 buggy test cases weighing 10 each)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52

